Autohelm, HSB (High Speed Bus), SailPilot, SeaTalk and SportPilot are registered trademarks of Raymarine Ltd.

Raymarine, AST (Advanced Steering Technology), AutoAdapt, AutoLearn, AutoRelease, AutoSeastate, AutoTack, AutoTrim, FastTrim, GyroPlus, RayGyro, RayPilot and WindTrim are trademarks of Raymarine Ltd.

Contents

About this handbook ......................................................... vii
Important Information ..................................................... viii
  Warranty ........................................................................ viii
  Safety notices ................................................................... viii
  EMC conformance ............................................................ ix
  Handbook information ..................................................... ix

Chapter 1: Introduction ..................................................... 1

Chapter 2: Basic Operation ............................................ 3
  2.1 Using the control unit ................................................... 4
  Start-up mode ............................................................... 4
  Keypad functions .......................................................... 4
  Display layout .............................................................. 5
  2.2 Using Auto mode ......................................................... 6
  Engaging the autopilot (Auto mode) ............................... 6
  Disengaging the autopilot (Standby mode) ...................... 6
  Changing course in Auto mode ....................................... 7
  Adjusting performance – Type 150G/400G ...................... 7
  Adjusting performance – Types 150/400 and 100/300 .......... 9
  Off Course warning ........................................................ 10
  Dodging obstacles and then resuming course .................... 10
  Using the set course feature ........................................... 12
  Using sail boat features .................................................. 12
  2.3 Adjusting display/keypad lighting and contrast ............ 15
  Lighting .......................................................................... 15
  Contrast .......................................................................... 16

Chapter 3: Advanced Operation ...................................... 17
  3.1 Using Track mode ....................................................... 18
  Selecting Track mode .................................................... 18
  Exiting Track mode ....................................................... 19
  Cross track error ........................................................... 19
  Tidal stream compensation ............................................ 20
  Waypoint arrival and advance ......................................... 21
  Waypoint Advance warning – summary .......................... 22
  Dodges in Track mode .................................................... 23
  Safety in Track mode ..................................................... 24
  3.2 Using Wind Vane mode – sail boats ............................ 25
  About Wind Vane mode .................................................. 25
Selecting Wind Vane mode ..................................................... 26
Exiting Wind Vane mode ........................................................ 26
Adjusting the locked wind angle ............................................. 26
Returning to the previous wind angle (LAST WND) .......... 27
Dodges in Wind Vane mode .................................................... 27
Wind Shift warning ................................................................. 28
Using AutoTack in Wind Vane mode ...................................... 28
Operating hints for Wind Vane mode ...................................... 29
3.3 Adjusting the rudder gain ................................................... 29
3.4 Displaying data pages ....................................................... 31
Waypoint names ................................................................. 32
Watch timer ............................................................................. 32
Warning messages ............................................................... 33
3.5 Remotely controlling ST60 and ST80 instruments ............ 34

Chapter 4: Fault Finding & Maintenance ..............................35
4.1 Fault finding ..................................................................... 36
Common autopilot problems ................................................. 36
Autopilot alarm messages .................................................... 37
4.2 General maintenance ....................................................... 39
Routine checks ..................................................................... 39
Cleaning the display ........................................................... 39
EMC advice ....................................................................... 39
4.3 Product support .............................................................. 40

Chapter 5: Installing the ST7001+ ..........................................45
5.1 Select the location ............................................................ 46
Site requirements ................................................................ 46
5.2 Control unit installation .................................................. 49
5.3 SeaTalk connections ...................................................... 50
5.4 NMEA connections ....................................................... 51
Receiving NMEA data ........................................................ 51
5.5 Functional test – repeater units only ................................. 54

Chapter 6: Commissioning the Autopilot ............................55
6.1 Dockside Checks ............................................................ 56
Step 1 - Switch on ............................................................... 56
Step 2 - Check the SeaTalk and NMEA connections ............ 57
Step 3 - Check the autopilot operating sense ...................... 58
Step 4 - Adjust basic autopilot settings ............................... 59
6.2 Seatrial Calibration .......................................................... 63
Calibrating the compass ..................................................... 64
Adjusting autopilot settings ................................................. 68
Chapter 7: Adjusting Autopilot Settings ..............................75
   7.1 Calibration basics ............................................................76
   Calibration groups ..............................................................76
   Accessing the Calibration mode ..........................................78
   7.2 Display Calibration ..........................................................79
   Display Calibration screens ..............................................79
   7.3 User Calibration ...............................................................87
   User Calibration screens ................................................87
   7.4 Seatrial Calibration ............................................................91
   7.5 Dealer Calibration ...........................................................92
   Accessing Dealer Calibration .............................................92
   Dealer Calibration screens and settings ...............................92
   Dealer Calibration defaults: Types 150/150G & 400/400G ...101
   Dealer Calibration options: Types 150/150G & 400/400G ..102

Appendix: Using the ST7001+
With Non-150/400 Autopilots ...........................................103
   Using the autopilot (non-150/400 systems) .........................104
   Commissioning the autopilot (non-150/400 systems) ............105
   Dockside Checks ..............................................................105
   Seatrial Calibration ............................................................105
   Calibration mode (non-150/400 systems) .............................106
   Calibration groups ............................................................106
   Dealer Calibration screens ..............................................108
   Dealer Calibration: possible settings with Type 100/300 .....114

Specifications .....................................................................115
   ST7001+ control unit ........................................................115
   Course computer functions .............................................115

Glossary ............................................................................116

Index ..................................................................................119
About this handbook

Welcome to the handbook for the ST7001+ autopilot control unit. This handbook contains two main parts:

**Part 1: Using the ST7001+**

1. **Chapter 1: Introduction**
   
   Introduces the autopilot, its features and its use.
   
   page 1

2. **Chapter 2: Basic Operation**
   
   Covers basic autopilot operation: using Auto mode, adjusting autopilot performance, and changing the control unit lighting.
   
   page 3

3. **Chapter 3: Advanced Operation**
   
   Explains how to use Track and Wind Vane modes, adjust rudder gain and display data pages.
   
   page 17

4. **Chapter 4: Fault Finding & Maintenance**
   
   Provides general maintenance procedures and trouble-shooting information (including alarm messages).
   
   page 35

**Part 2: Installing the ST7001+**

5. **Chapter 5: Installing the ST7001+**
   
   Explains how to install your ST7001+ control unit and connect it to your autopilot system.
   
   page 45

6. **Chapter 6: Commissioning the Autopilot**
   
   Covers dockside checks after installation, and the initial seatrial calibration.
   
   page 55

7. **Chapter 7: Adjusting Autopilot Settings**
   
   Provides details on adjusting the control unit and autopilot settings in Calibration mode.
   
   page 75

At the end of this handbook we have included an appendix, product specifications, a glossary, an index, installation template, and warranty information.

**Note:** This handbook contains important information about installing, using and maintaining your new Raymarine product. To get the best from the product, please read this handbook thoroughly.
Important Information

Warranty

To register your new Raymarine product, please take a few minutes to fill out the warranty card. It is important that you complete the owner information and return the card to us to receive full warranty benefits.

Safety notices

WARNING:  Product installation
This equipment must be installed and operated in accordance with the instructions contained in this handbook. Failure to do so could result in poor product performance, personal injury and/or damage to your boat.

WARNING:  Electrical safety
Make sure the power supply is switched off before you make any electrical connections.

WARNING:  Calibration
We supply this product calibrated to default settings that should provide initial stable performance for most boats. To ensure optimum performance on your boat, you must complete Chapter 6: Commissioning the Autopilot before use.

WARNING:  Navigation aid
Although we have designed this product to be accurate and reliable, many factors can affect its performance. As a result, it should only be used as an aid to navigation and should never replace common sense and navigational judgement. Always maintain a permanent watch so you can respond to situations as they develop.

Your Raymarine autopilot will add a new dimension to your boating enjoyment. However, it is the skipper’s responsibility to ensure the safety of the boat at all times by following these basic rules:

• Ensure that someone is present at the helm AT ALL TIMES, to take manual control in an emergency.
- Make sure that all members of crew know how to disengage the autopilot.
- Regularly check for other boats and any obstacles to navigation – no matter how clear the sea may appear, a dangerous situation can develop rapidly.
- Maintain an accurate record of the boat’s position by using either a navigation aid or visual bearings.
- Maintain a continuous plot of your boat’s position on a current chart. Ensure that the locked autopilot heading will steer the boat clear of all obstacles. Make proper allowance for tidal set – the autopilot cannot.
- Even when your autopilot is locked onto the desired track using a navigation aid, always maintain a log and make regular positional plots. Navigation signals can produce significant errors under some circumstances and the autopilot will not be able to detect these errors.

**EMC conformance**

All Raymarine equipment and accessories are designed to the best industry standards for use in the recreational marine environment. The design and manufacture of Raymarine equipment and accessories conform to the appropriate Electromagnetic Compatibility (EMC) standards, but correct installation is required to ensure that performance is not compromised.

**Handbook information**

To the best of our knowledge, the information in this handbook was correct when it went to press. However, Raymarine cannot accept liability for any inaccuracies or omissions it may contain. In addition, our policy of continuous product improvement may change specifications without notice. As a result, Raymarine cannot accept liability for any differences between the product and the handbook.
Part 1: Using the ST7001+
Part 1: Using the ST7001+
Chapter 1: Introduction

The Raymarine ST7001 Plus (ST7001+) is a SeaTalk® compatible autopilot control unit. It is designed as the main control unit for Raymarine Type 150, 150G, 400 and 400G course computers.

The ST7001+ control unit has the following modes:

1. **Standby**: autopilot off (see page 6)
2. **Auto**: autopilot steers the boat to maintain a locked heading (see page 6)
3. **Track**: autopilot steers the boat to maintain a track between two waypoints created on a navigation aid (see page 18)
4. **Wind Vane**: autopilot steers the boat to maintain a course relative to a true or apparent wind angle (see page 25)
5. **Calibration**: so you can adjust the autopilot to give optimum performance for your boat (see page 76). This includes automatic compass deviation correction (all autopilots) and AutoLearn automatic steering calibration (Type 150G/400G systems only)

The ST7001+ also provides:

- automatic tack (AutoTack) in Auto and Wind Vane modes
- Northerly/Southerly heading compensation
- waypoint advance feature in Track mode
Introduction

Functions with Type 150/150G and 400/400G autopilots

The functions provided with Type 150/150G and Type 400/400G autopilots depend on whether the course computer contains an internal GyroPlus yaw sensor:

<table>
<thead>
<tr>
<th>Type 150G/400G (with GyroPlus)</th>
<th>Type 150/400 (without GyroPlus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal GyroPlus yaw sensor provides enhanced course keeping using AST (Advanced Steering Technology)</td>
<td>Full basic functionality: uses Raymarine steering algorithm without AST</td>
</tr>
<tr>
<td>Improved track-keeping</td>
<td>Improved track-keeping</td>
</tr>
<tr>
<td>Steering to true and apparent wind in Wind Vane mode</td>
<td>Steering to true and apparent wind in Wind Vane mode</td>
</tr>
<tr>
<td>Improved calibration access, including AutoLearn (self-learning calibration)</td>
<td>Improved calibration access, but without AutoLearn</td>
</tr>
</tbody>
</table>

Extended systems

You can connect the ST7001+ to other Raymarine SeaTalk equipment so it can send and receive SeaTalk data:

- it can use wind information from a SeaTalk wind instrument for Wind Vane steering
- it can use waypoint information from a SeaTalk navigation instrument to provide track control
- it can use boat speed from a SeaTalk speed instrument to optimize track-keeping performance

You can also use the ST7001+ autopilot with any navigator (GPS, Decca, Loran) or wind instrument that transmits National Marine Electronics Association (NMEA) 0183 data.

The ST7001+ can display SeaTalk and NMEA instrument data in a user-defined selection of data pages. When you are using the ST7001+ to repeat instrument data, it shows a ‘pop-up’ pilot page for 5 seconds whenever you make a change in autopilot control.

Compatibility with other autopilots

The ST7001+ is also compatible with Raymarine Type 100 and Type 300 course computers (see the Appendix for more details). You can also use it as an additional repeater control unit for any SeaTalk autopilot system, allowing autopilot control from a secondary location.
Chapter 2: Basic Operation

The sections in this chapter explain how to use the basic functions on your ST7001+ autopilot control unit:

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Using the control unit</td>
<td>4</td>
</tr>
<tr>
<td>2.2</td>
<td>Using Auto mode</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>Adjusting display/keypad lighting and contrast</td>
<td>15</td>
</tr>
</tbody>
</table>

Note: If you are using the control unit with a non-150/400 autopilot system, refer to the notes in the Appendix.
2.1 Using the control unit

Start-up mode

The autopilot always powers up in Standby mode with the display showing the boat’s current compass heading.

Note: You can press **standby** at any time to return to manual steering.

Keypad functions

The autopilot is controlled using simple push-button operations, all of which are confirmed with a short beep. In addition to the main single-key functions, there are several dual key operations.
Display layout

The ST7001+ display screen provides the following information:

The bar graph at the bottom of the screen is normally a rudder position indicator. This indicates the current position of the rudder, as measured by the rudder position sensor.

**Note:** You can change this to a heading/cross track/wind error bar in Display Calibration, see page 79.
2.2 Using Auto mode

CAUTION:
Before using Auto mode, make sure that the pilot has been correctly commissioned.

Engaging the autopilot (Auto mode)
To engage the autopilot:
1. Steady the boat on the required heading.
2. Press auto:
   • in Auto mode, the display shows the locked autopilot heading

CAUTION:
Autopilot course control makes it easier to sail a boat, but it is NOT a substitute for good seamanship. ALWAYS maintain a permanent watch by the helm.

Disengaging the autopilot (Standby mode)
Press standby to disengage the autopilot:
   • in Standby mode, the display shows the boat’s current compass heading.
   • the last heading is memorized and can be recalled (see page 11).
### Changing course in Auto mode

In Auto mode, use the \(-1\) and \(-10\) (port) and \(+1\) and \(+10\) (starboard) keys to change the locked heading in steps of 1° or 10°. For example: press \(-10\) three times for a 30° course change to port.

![Changing course in Auto mode diagram](image)

### Adjusting performance – Type 150G/400G

The main way you can adjust the performance of Type 150G/400G (GyroPlus) autopilot systems is by changing the response level. This is the only user adjustment you should need to make to the autopilot on a regular basis.

The response level controls the relationship between the autopilot’s course keeping accuracy and the amount of helm/drive activity.

Type 150G and 400G autopilot systems have 9 levels of response:

- level 1 gives the least pilot activity to conserve power, but may compromise short-term course-keeping accuracy
- levels 4 to 6 should give good course keeping under normal operating conditions – with crisp, well controlled turns but without being over-aggressive
- level 9 gives the tightest course keeping and greatest rudder activity, but may lead to a rough passage in open waters as the autopilot may ‘fight’ the sea

When you require extra tight course keeping (e.g. for pilotage in confined and sheltered waters), increase the setting. If you want to minimize drive activity and conserve battery power, decrease the setting.
You can adjust the default response level in either User or Dealer Calibration (see page 89). This determines the default power-up response level.

However, when using your autopilot on a day-to-day basis, you can make temporary adjustments to the response level. By doing this you can match autopilot performance to different conditions.

**Temporary changes to response – Type 150G/400G**

With these points in mind, you should use the following procedure to make temporary adjustments to the response level when required:

1. Display the RESPONSE screen by pressing either the resp key or the -1 and +1 keys together momentarily.

   ![RESPONSE screen diagram]

   **Note:** The RESPONSE screen is set as a default data page (see page 81) so you can also access it by pressing disp and then scrolling through the data pages.

2. Press -1 or +1 or the up arrow or down arrow keys to change the response level.

3. Press disp or wait for 5 seconds to return to the previous display.

   **Note:** You will lose these temporary changes to response level whenever the system is powered off. You can make permanent adjustments in User or Dealer Calibration (see page 89).
Adjusting performance – Types 150/400 and 100/300

To adjust the performance of Type 150/400 (non-GyroPlus) and Type 100/300 autopilot systems you can change the response level.

Response level – Types 150/400 and 100/300

The response level controls the relationship between the autopilot’s course keeping accuracy and the amount of helm/drive activity.

You can adjust the default response level in either User or Dealer Calibration (see page 89). This determines the default power-up response level.

However, when using your autopilot on a day-to-day basis, you will need to make temporary adjustments to the response level. By doing this you can match autopilot performance to different conditions.

Type 150/400 (without GyroPlus) and Type 100/300 autopilot systems have three different response levels:

- **Response Level 1: AutoSeastate on (Automatic deadband)**
  This setting causes the autopilot to gradually ignore repetitive boat movements and only react to true variations in course. This provides the best compromise between power consumption and course keeping accuracy, and is the default calibration setting.

- **Response Level 2: AutoSeastate off (Minimum deadband)**
  This setting provides tighter course keeping. However, this results in increased power consumption and drive unit activity.

- **Response Level 3: AutoSeastate off + yaw damping**
  This setting provides the tightest possible course keeping by introducing counter rudder yaw damping. You can adjust the counter rudder setting in Dealer Calibration (see page 95)

To make a temporary change to the response setting:

1. Display the RESPONSE screen by pressing either the **resp** key or the **+1** and **-1** keys together momentarily.
2. Press **-1** or **+1** or the up arrow or down arrow keys to change the response between levels 1 to 3.
3. Press **disp** or wait for 5 seconds to return to the previous display.

**Note:** You will lose these temporary changes to response level whenever the system is powered off. You can make permanent adjustments in User or Dealer Calibration (see page 89).
Off Course warning

The ST7001+ activates the OFF COURSE warning when the boat has been off course from the locked heading by more than the specified angle* for longer than 20 seconds. It shows whether the deviation is to port or starboard.

Note: * You can adjust this specified off course angle in Dealer Calibration (see page 97).

1. To cancel the off course warning, press standby to return to hand steering.
2. Check whether your boat is carrying too much sail, or whether the sails are badly balanced. You can usually significantly improve course keeping by improving the sail balance.

Note: The ST7001+ also clears the warning if the heading recovers, if you change the course, or if you change the operating mode.

Dodging obstacles and then resuming course

To avoid an obstacle when your boat is under autopilot control, you can dodge the obstacle and then resume your previous course.
Dodging an obstacle

1. Select a course change in the appropriate direction. For example, press -10 three times for a 30° dodge to port.
2. When safely clear of the obstacle, you can either:
   - reverse the previous course change (for example, press +10 three times), or
   - return to the previous locked heading (LAST HEADING) as described below

Returning to the previous heading (LAST HEADING)

When the boat is in Auto mode and you have steered the boat away from the selected locked heading for any reason (for example, to execute a dodge maneuver), you can return to the previous locked heading (the most recent heading held for 20 seconds). To do this:

1. Press res’m. The display flashes and shows the previous locked heading (LAST HEADING) for 10 seconds. The direction-to-steer indicator shows the direction the boat will turn.
2. To accept this heading, and resume this course, press auto when the display is flashing.

Note: If you do not press auto while the display is flashing, the autopilot will maintain the current heading.
Using the set course feature

The ST7001+ has a set course feature that allows you to set up a course and then apply it at a specific time (e.g. to make a course change at a pre-determined time or location).

To set up a course:

1. Press the set crs key. You will then see the SETCOURSE screen with a flashing heading.
2. Use the -1, +1, -10 and +10 keys to set the heading you want. The autopilot will not accept the new heading at this stage.
3. If you do not want to accept the new course at this time, return to the previous autopilot mode by either pressing the disp key or waiting 10 seconds for the screen to time-out.

To accept the heading you have set on the SETCOURSE screen:

1. Press set crs to show the SETCOURSE screen.
2. Press auto: the control unit will sound an alarm and show the direction the autopilot will steer (PORT or STARBOARD).
3. Press auto again to accept the new heading. The autopilot will then turn the boat onto the set course.

Using sail boat features

Automatic tack (AutoTack)

The ST7001+ has a built in automatic tack facility (AutoTack) that turns the boat through 100° in the required direction. If you have set the vessel type to SAIL BOAT, you can adjust the default AutoTack angle in User or Dealer calibration (see page 87).

- to AutoTack to port: press the -1 and -10 keys together
- to AutoTack to starboard: press the +1 and +10 keys together

CAUTION:

When making major course changes, the trim on the boat may change substantially. Because of this, the autopilot may take some time to settle accurately onto the new course.
Preventing accidental gybes

Note: For the gybe inhibit feature to work, the autopilot needs suitable wind information (see page 25).

The gybe inhibit feature stops the boat from performing an AutoTack away from the wind – this will prevent accidental gybes. On Type 150/150G and 400/400G autopilots, you can turn off this feature if required:

- with gybe inhibit on:
  - you will be able to perform an AutoTack into the wind
  - to prevent accidental gybes, the autopilot will prevent the boat from performing an AutoTack away from the wind
- with gybe inhibit off:
  - you can perform an AutoTack into or away from the wind.

Note: Gybe inhibit is switched on as a default. On Type 150/150G and Type 400/400G autopilots you can switch it off in User or Dealer Calibration (see page 87).

Gusty conditions

In gusty conditions, the course may tend to wander slightly, particularly if the sails are badly balanced. If you take the following precautions, the autopilot will be able to maintain competent control even in gale force conditions:
You can significantly improve course keeping by improving the sail balance:
- do not allow the boat to heel over excessively
- ease the mainsheet traveller to leeward to reduce heeling and weather helm
- if necessary, reef the mainsail a little early

In very strong winds and large seas, you should avoid sailing with the wind dead astern:
- ideally, bring the wind at least 30° away from a dead run
- in severe conditions, you may also need to remove the mainsail and sail under headsail only
2.3 Adjusting display/keypad lighting and contrast

Lighting

Note: When the display lighting is off, the control unit illuminates the keys at a courtesy level.

To adjust the display and keypad lighting:

1. Press **disp** for 1 second from any mode to access the LAMP screen and turn on the lights.

2. Press the **disp** key to cycle through the possible illumination settings: LAMP 3 (the brightest setting), LAMP 2, LAMP 1, OFF, LAMP 1, LAMP 2, LAMP 3 and so on:
   - as you change the setting, the illumination on any other SeaTalk instruments or control units will also change.

3. The display automatically returns to the previous mode if you do not press a key for 10 seconds:
   - if you press another mode key within 10 seconds you will select the mode assigned to that key (for example: **auto** selects Auto mode, **standby** selects Standby mode)

Note: You can also adjust the lighting level from any other SeaTalk instrument or control unit.

Note: When you switch off the unit you lose any changes you have made to the lighting level.
Contrast

To set the contrast level for the ST7001+ display:

1. With the autopilot in Standby mode, press the `disp` key for one second to access the LAMP screen.
2. Press the `disp` key for one second again, to display the CONTRAST screen.
3. Use the `up` and `down` arrow keys to set the required contrast level (from 1 to 15).
4. The display automatically returns to the previous mode if you do not press a key for 10 seconds:
   - if you press another mode key within 10 seconds you will select the mode assigned to that key (for example: `auto` selects Auto mode, `standby` selects Standby mode)
Chapter 3: Advanced Operation

The sections in this chapter explain how to use the more advanced functions on your autopilot:

3.1 Using Track mode  
Tracking between waypoints created on navigation equipment connected to the autopilot system. page 18

3.2 Using Wind Vane mode – sail boats  
Using the autopilot to maintain a course relative to a true or apparent wind angle. page 25

3.3 Adjusting the rudder gain  
Explains how to adjust the rudder gain setting (mainly applies to non-GyroPlus Type 150/400 systems). page 29

3.4 Displaying data pages  
Describes how to use data pages to display SeaTalk and NMEA information on the control unit. This section also explains the Watch timer feature. page 31

3.5 Remotely controlling ST60 and ST80 instruments  
Describes how to use the ST7001+ as a remote control keypad for ST60 and ST80 instruments. page 34

Note: If you are using the control unit with a non-150/400 autopilot system, refer to the notes in the Appendix.
3.1 Using Track mode

Note: You can only use Track mode if you have connected the autopilot to a suitable navigation system providing SeaTalk or NMEA navigation information.

The autopilot system can receive track information from either:

- a SeaTalk navigation instrument or chartplotter (see page 50 for information on connecting to SeaTalk), or
- a non-SeaTalk navigation system transmitting data in the NMEA 0183 format (see page 51 for information on connecting NMEA equipment)

In Track mode, the autopilot maintains a track between waypoints created on the navigation system. The autopilot makes any course changes necessary to keep your boat on track, automatically compensating for tidal streams and leeway.

Selecting Track mode

CAUTION:

When you enter Track mode, the autopilot will bring the boat onto the track in a controlled way. The closer the boat is to the correct heading and track, the quicker the autopilot will settle the boat onto the new course. To avoid an unexpected turn, approximately align the boat with the required track before entering Track mode.

To select Track mode:

1. Start with the autopilot in Auto mode.
2. Press track to enter Track mode.
3. Wait for the Waypoint Advance warning to sound. The display will show the bearing to the next planned waypoint and the direction the boat will turn to reach this waypoint.
4. Check that it is safe for the boat to turn onto the new course.
5. Press the track key:
   - the autopilot will turn the boat onto the new course in a controlled way
   - the display shows the heading required to achieve the required track
Chapter 3: Advanced Operation

**Note:** The closer the boat is to the correct heading and track when you press **track**, the quicker the autopilot will bring the boat onto the new course. If the boat is more than 0.3 nm from the track, the Large Cross Track Error warning will sound (see page 19).

**Exiting Track mode**

You can exit Track mode and return to Auto or Standby mode by:

- pressing **auto** to return to Auto mode
- pressing **standby** to steer manually in Standby mode

**Cross track error**

Cross track error (XTE) is the distance between the current position and a planned route. The autopilot receives the cross track error information from the navigation equipment, and displays the XTE in nautical miles (nm), statute miles (SM) or kilometres.

If the cross track error is greater than 0.3 nm, the ST7001+ will sound the Large Cross Track Error warning and show whether you are to the port (Pt) or starboard (Stb) of the planned track.
**Tidal stream compensation**

Under most conditions, the autopilot will hold the selected track to within ±0.05 nm (300 ft) or better. The autopilot takes account of the boat’s speed when computing course changes to ensure optimum performance over a wide range of boat speeds.
In order of preference, the autopilot uses:

- measured boat speed (speed through water)
- if this is not available, it uses the speed over ground (SOG)
- if this is not available, it uses the cruise speed specified in Dealer Calibration (see page 99)

**Waypoint arrival and advance**

**Note:** Waypoint advance only operates if the ST7001+ is receiving valid bearing to waypoint and waypoint name information.

**Arrival**

As the boat arrives at the target waypoint the navigation aid will select the next target waypoint and transmit this to the autopilot. The autopilot will then detect the new target waypoint name, sound the Waypoint Advance warning and display the Waypoint Advance (NEXT WPT) screen. This shows the new bearing to the next waypoint and the direction the boat will turn to acquire the new track.
Advance

When the ST7001+ sounds the Waypoint Advance warning, it suspends Track mode and maintains the current boat heading. To advance to the next waypoint:

1. Check that it is safe to turn onto the new track.
2. Press the **track** key. This will cancel the Waypoint Advance warning and turn the boat towards the next waypoint.

**Note:** If you do not press **track** to accept the Waypoint Advance, the autopilot will maintain the current heading and continue sounding the warning.

Skipping a waypoint – SeaTalk navigators only

If you want to advance to the next waypoint **before** you have arrived at the target waypoint, you can skip a waypoint by pressing **track** for 1 second. The display will then show the Waypoint Advance screen for the next waypoint. Check it is safe to turn, then press **track** to turn the boat towards the next waypoint.

**WARNING:**

Skipping a waypoint will take you straight to the next waypoint. Check your navigation before making the turn.

Route Completed warning

The ST7001+ displays the ROUTE COMPLETED warning when you have reached the last waypoint on a route in Track mode.

To respond to this message:

- press **auto** to continue on the same heading
- or press **standby** to return to hand steering

Waypoint Advance warning – summary

The ST7001+ activates the Waypoint Advance warning (NEXT WPT?) in Track mode whenever the target waypoint name changes. This occurs when:

- you select automatic acquisition by pressing **track** from Auto
- you request waypoint advance by pressing **track** for 1 second in Track mode (with SeaTalk navigators only)
• the boat arrives at the target waypoint and the navigator accepts the next waypoint
• you activate the Man Overboard (MOB) function in Track mode

When the warning sounds, the pilot continues on its current heading but displays:
• the bearing to the next waypoint
• the direction the boat will turn to take up that bearing

**Responding to a Waypoint Advance warning**

To respond to a Waypoint Advance warning:

• check that it is safe to turn onto the new track, then press `track` to accept the waypoint advance
• alternatively, you can cancel the warning without accepting the waypoint advance by pressing:
  • `standby` to return to hand steering
  • `auto` to return to Auto mode

**Dodges in Track mode**

When the autopilot is in Track mode you still have full control from the keypad.

**Initiating a dodge maneuver**

In Track mode, you can make a dodge maneuver by using the course change keys (-1, +1, -10 or +10) to select the desired course change.

**Cancelling a dodge maneuver**

After you have avoided the hazard, you can cancel the dodge course change by making an equal course change in the opposite direction.
Safety in Track mode

**CAUTION:**

Track mode provides accurate track keeping even in complex navigational situations. However, it is still the skipper’s responsibility to ensure the safety of their boat at all times through careful navigation and frequent position checks.

Sailing in Track mode assists precise navigation and removes the tasks of compensating for wind and tidal drift. However, you MUST still maintain an accurate log with regular plots.

**Confirming position at the start of a journey**

At the start of a journey you must always use an easily identifiable fixed object to confirm the fix given by the navigation system. Check for fixed positional errors and compensate for them.

**Verifying computed positions**

Always verify the computed position with a dead reckoned position, calculated from the average course steered and the distance logged.

**Plot frequency**

- In open water, you should make plots at least every hour.
- In confined waters or when near to potential hazards, you should make plots more frequently.
3.2 Using Wind Vane mode – sail boats

**Note:** You can only select Wind Vane mode if the autopilot is receiving suitable SeaTalk or NMEA wind direction information.

### About Wind Vane mode

When the autopilot is in Wind Vane mode it uses the fluxgate compass as the primary heading reference. As changes in the true or apparent wind angle occur, the autopilot adjusts the locked compass heading to maintain the original wind angle.

### Wind information

To use Wind Vane mode, the autopilot must receive wind information from one of the following sources:

- SeaTalk wind instrument connected to the autopilot via SeaTalk
- NMEA wind instrument
- Raymarine pushpit wind vane connected via a SeaTalk interface

### True and apparent wind

Type 150/150G and 400/400G autopilots can maintain a course relative to either an apparent or true wind angle in Wind Vane mode:

- steering to **apparent wind**, the autopilot maintains the apparent wind angle
- steering to **true wind**, the autopilot maintains the true wind angle

**Note:** The default setting is apparent wind. On Type 150/150G and 400/400G autopilots you can change this to true wind in User or Dealer Calibration (see page 89). Type 100/300 autopilots can only maintain a course relative to apparent wind.

### WindTrim

In Wind Vane mode the autopilot uses WindTrim to eliminate the effects of turbulence and short term wind variations. This provides smooth and precise performance with minimal power consumption. You can adjust the wind response (WindTrim) level in User or Dealer Calibration (see page 89) to control how quickly the autopilot responds to changes in the wind direction. Higher wind trim settings will result in a pilot that is more responsive to wind changes.
Selecting Wind Vane mode

You can select Wind Vane mode from either Standby or Auto mode:
1. Steady the boat onto the required wind angle.
2. Press **standby** and **auto** together to select Wind Vane mode and lock the current wind angle:
   - the display shows the locked heading (e.g. 128°) and the wind angle (e.g. WIND 145P indicates an wind angle of 145° to port)
   - if the autopilot does not enter Wind Vane mode, it is not receiving wind data - check the instrument and connections

The autopilot will then adjust the boat’s heading to maintain the locked wind angle.

Exiting Wind Vane mode

You can exit Wind Vane mode by:
• pressing **auto** to return to Auto mode
• pressing **standby** to steer manually in Standby mode

Adjusting the locked wind angle

You can adjust the locked wind angle by using the **-1, +1, -10** and **+10** keys to change course. For example, to bear away by 10° when the boat is on a starboard tack:
• press **-10** to turn the boat 10° to port – the locked wind angle and locked heading will both change by 10°
• the autopilot will then adjust the locked heading as required to maintain the new wind angle

**Note:** Because turning the boat affects the relationship between the true and apparent wind angles, you should only use this method to make minor adjustments to the wind angle. For major changes, return to Standby mode, steer onto the new heading, then reselect Wind Vane mode.
Returning to the previous wind angle (LAST WIND)

If you have steered the boat away from the selected wind angle for any reason (such as a dodge maneuver or selecting Standby mode), you can return to the previous locked wind angle:

1. Press res’m to display the previous wind angle (LAST WIND):
   - the LAST WIND text alternates with the previous wind angle and direction. The display shows the previous locked heading and an indication of which direction the boat will turn.

2. Check that it is safe to turn onto this course.
3. To accept this wind angle, press standby and auto together within 10 seconds.
   
   **Note:** If you do not accept the previous wind angle within 10 seconds, the autopilot will lock onto the current wind angle.

Dodges in Wind Vane mode

When the autopilot is in Wind Vane mode you still have full control from the keypad.

**Initiating a dodge maneuver**

In Wind Vane mode, you can make a dodge maneuver by using the course change keys (-1, +1, -10 or +10) to select the desired course change. The autopilot will adjust both the locked heading and locked wind angle.

** Cancelling a dodge maneuver**

After you have avoided the hazard, you can reverse the previous course change, or return to the previous wind angle (LAST WIND).
**Wind Shift warning**

If the autopilot detects a wind shift of more than 15° it will sound the wind shift warning and display the WIND SHIFT message:

- To cancel the warning, and retain the existing wind angle and new heading, press **standby** and **auto** together.
- Alternatively, to cancel the warning and return to the previous heading, either:
  - adjust the locked wind angle using the -1, +1, -10 and +10 keys,
  or
  - press **standby** to return to hand steering, steer onto the required heading, and press **standby** and **auto** together to return to Wind Vane mode with the new wind angle

**Using AutoTack in Wind Vane mode**

**Note:** If you use the AutoTack function in Wind Vane mode, make sure the wind vane has been centered accurately.

The ST7001+ has a built in automatic tack facility (AutoTack) that turns the boat through 100° in the required direction:

- to AutoTack to **port**: press the -1 and -10 keys together
- to AutoTack to **starboard**: press the +1 and +10 keys together

**Note:** If you have set the vessel type to **SAIL BOAT**, you can adjust the default AutoTack angle in User or Dealer calibration (see page 87).
When you AutoTack in Wind Vane mode, the boat turns through the AutoTack angle. The autopilot will then trim the heading to mirror the locked wind angle from the previous tack.

**Operating hints for Wind Vane mode**

- Always trim your sails carefully to minimize the amount of standing helm.
- Reef the headsail and mainsail a little early rather than too late.
- In Wind Vane mode the pilot will react to long-term wind shifts, but will not correct for short-term changes such as gusts.
- In gusty and unsteady inshore conditions, it is best to sail a few degrees further off the wind so that changes in wind direction can be tolerated.

### 3.3 Adjusting the rudder gain

**Note:** Although this feature is available on all systems, you should not need to adjust the rudder gain setting on Type 150G/400G autopilot systems after completing the AutoLearn (see page 68).

On Type 150/400 (non-GyroPlus) and Type 100/300 systems, you can make temporary adjustments to rudder gain to change the autopilot’s steering characteristics. Rudder gain is a measure of how much helm the autopilot will apply to correct course errors:

- if rudder gain is adjusted **correctly**, the course changes should result in a crisp turn followed by an overshoot of no more than 5°
- If rudder gain is **too high**, courses change will result in a distinct overshoot (A).
- If rudder gain is **too low**, the boat will feel sluggish – it will take a long time to make the turn and there will be no overshoot (B).

**Note:** See page 71 for a full explanation of rudder gain and how to adjust it correctly.

If necessary, you can make a temporary change to rudder gain as follows:

1. Press the resp key or the -1 and +1 keys together for 1 second to display the rudder gain (RUDD GAIN) screen:
   - If you have set up the RUDD GAIN screen as a default data page (see page 81) you can also access it by pressing disp and then scrolling through the data pages.
2. Press -1 or +1 or up/down arrow keys to change the rudder gain.
3. Press disp or wait for 5 seconds to return to the previous display.

**Note:** You will lose these temporary changes to rudder gain whenever the system is powered off. You can make permanent adjustments in User or Dealer Calibration (see page 95).

**WARNINGS:**
1. You must set rudder gain correctly on planing craft. Incorrect rudder gain will lead to poor steering performance and can be dangerous at high speeds.
2. If you increase the rudder gain setting on a Type 150G/400G autopilot, you must also increase the counter rudder setting.
3.4 Displaying data pages

Use the disp key to show ‘data pages’ of SeaTalk or NMEA data:

1. Press disp to access the first data page, and press it again to cycle through each data page in turn:
   - to return to a previous data page, press disp for 1 second within 2 seconds of displaying a page
   - when you cycle past the last data page, the display returns to the current autopilot mode screen (for example, Auto)
   - 4 data pages are set in the factory as a default (see diagram): within User setup you can select up to 15 pages and control the information they display (see page 81)

2. Select the data page you want to use as the main display:
   - the current autopilot mode is shown at the left of the display and the autopilot bar graph remains in use
   - if you then select a new mode or make a course change, the autopilot mode screen appears as a ‘pop-up’ for 5 seconds (you can adjust the ‘pop-up’ time as described on page 81)

Notes:
1. If the autopilot system cannot obtain the required information, the data page will show dashes instead of a value.
2. The direction-to-steer arrows relate to the data page information.
3. Most data pages show repeated data so you cannot adjust them: the exceptions are the RESPONSE and RUDDER GAIN data pages, which you can adjust using the -1 and +1 or up/down arrow keys
Waypoint names

If waypoint names have been allocated, the ST7001+ will display them on the Cross Track Error (XTE), Bearing To Waypoint (BTW) and Distance To Waypoint (DTW) data pages:

- waypoint names of five characters or less are displayed together with the page name (as shown by screen A below)
- waypoint names of more than five characters alternate with the page name (as shown by screen B below)
- if the waypoint name has more than nine characters, the display only shows the first nine characters

Watch timer

The ST7001+ has a Watch timer controlled by the WATCH data page. This timer sounds a warning every 4 minutes, requiring a keypad press on the autopilot.

Setting the Watch timer

To set the Watch timer:

1. First, you must configure the WATCH screen as one of the data pages for display (see page 81).
2. When you have done this select Auto, Track or Wind Vane mode.
3. Press the disp key until you see the WATCH data page:
   - the watch timer will start counting
   - when the timer reaches 3 minutes, the WATCH text starts flashing to indicate that the timer is in the last minute
   - when the timer reaches 4 minutes, the ST7001+ activates the audible Watch warning
Responding to a Watch warning

To respond to a Watch warning:

- press **auto** to silence the warning and reset the timer to 4 minutes
- or
- press any other key to silence the warning, reset the timer and perform that key’s normal function

**Note:** You cannot engage Auto mode directly when the WATCH screen is displayed – pressing **auto** will only reset the Watch timer. If you want to enter Auto mode, you must first exit the WATCH screen (see below).

Exiting the Watch screen

To exit the Watch screen:

- press **disp** to display a different data page
- or
- press **standby**

Warning messages

**Shallow warning (SHALLOW)**

The ST7001+ shows the Shallow warning if it receives a shallow depth message from an instrument on the SeaTalk system. Press **standby** or **disp** to cancel the warning.

**Man Overboard warning (MOB)**

The ST7001+ activates the Man Overboard warning if it receives a man overboard (MOB) message from another instrument on the SeaTalk system. It displays the text MOB instead of the waypoint number for the XTE, DTW and BTW data pages.
3.5 Remotely controlling ST60 and ST80 instruments

You can use the ST7000+ to remotely control ST60 or ST80 instruments (both standard 110 mm and Maxiview instruments).

**Note:** Before attempting to remotely control ST60 or ST80 instruments, you first need to define the instrument grouping and allocate the ST7001+ to the required group (see page 83).

To operate ST60 or ST80 instruments from the ST7001+ control unit:

1. Select either:
   - the INST REM data page (to control standard instruments), or
   - the MAXI REM data page (to control ST80 Maxiviews).
2. Carry out the required instrument control functions from your ST7001+ (using the keys shown in the following illustration).

**Note:** The currently-selected instrument is indicated as follows:
- on ST80 instruments, the characters are displayed as white characters on a black background (instead of black on white)
- on ST60 digital instruments, you will see a REMOTE message
- on ST60 analogue instruments, you will see a flashing TRUE/MAG and/or TRUE/APP message

![Image showing the selection process for standard and Maxiview instruments](image-url)
Chapter 4: Fault Finding & Maintenance

All Raymarine products are designed to provide many years of trouble-free operation. We also put them through comprehensive testing and quality assurance procedures before shipping.

This chapter provides information about identifying common problems, interpreting alarm messages, maintaining your autopilot system and obtaining product support.

If a fault occurs with your autopilot, use the fault finding tables in this section to help identify the problem and provide a solution. If you cannot resolve the problem yourself, refer to the product support information.

### 4.1 Fault finding
This section provides information to help you identify and resolve common autopilot problems and error messages.  

### 4.2 General maintenance
This section explains how to maintain your autopilot system.  

### 4.3 Product support
This section outlines the product support available from Raymarine worldwide.
### 4.1 Fault finding

#### Common autopilot problems

<table>
<thead>
<tr>
<th>SYMPTOM</th>
<th>CAUSE and SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Display is blank</td>
<td>No power – check the power and SeaTalk fuses on course computer, then check main fuse/circuit breaker.</td>
</tr>
<tr>
<td>Display shows stationary dashes</td>
<td>The control unit is not receiving data – check cabling.</td>
</tr>
<tr>
<td>Display shows rotating dashes</td>
<td>Compass correction in progress (see page 64).</td>
</tr>
<tr>
<td>Displayed compass heading does not agree with the boat's compass</td>
<td>You have not calibrated the compass. Carry out the deviation and alignment procedures (see page 64).</td>
</tr>
<tr>
<td>No display bar on the display</td>
<td>Rudder bar switched off in Display Calibration – select RUDD BAR or STEER BAR.</td>
</tr>
<tr>
<td>Rudder bar display moves in opposite direction to rudder</td>
<td>Reverse the red and green rudder position sensor connections at the course computer</td>
</tr>
<tr>
<td>Boat turns slowly and takes a long time to come onto course</td>
<td>Rudder gain too low (see page 71). Complete AutoLearn or increase setting.</td>
</tr>
<tr>
<td>Boat overshoots when turning onto a new course</td>
<td>Rudder gain too high (see page 71). Complete AutoLearn or decrease setting.</td>
</tr>
<tr>
<td>The autopilot appears to be unstable in Track mode, or track-holding is slow</td>
<td>If tide speed exceeds 35% of boat speed, and boat speed is not available via SeaTalk, change the Cruise Speed setting in Dealer Calibration to the boat’s cruising speed (see page 99).</td>
</tr>
<tr>
<td>The autopilot appears to be unstable on Northerly headings in the Northern hemisphere (or Southerly headings in the Southern hemisphere)</td>
<td>Northerly/Southerly heading correction (AutoAdapt) is not set up (see page 99). [Does not apply to 150G/400G systems.]</td>
</tr>
<tr>
<td>You cannot enter Seatrial Calibration</td>
<td>Seatrial calibration lock is on – turn off the calibration protection feature in Dealer Calibration (see page 92).</td>
</tr>
<tr>
<td>The autopilot will not ‘talk’ to other SeaTalk instruments</td>
<td>Cabling problem – make sure all the cables are connected properly.</td>
</tr>
<tr>
<td>Position information not received</td>
<td>Navigator not transmitting the correct position data.</td>
</tr>
<tr>
<td>The autopilot will not auto advance to the next waypoint</td>
<td>No bearing to waypoint information received from the navigator.</td>
</tr>
</tbody>
</table>
### Autopilot alarm messages

When the autopilot detects a fault or failure on the system, it will activate one of the alarm messages listed in the following table.

- Unless otherwise stated, you should respond to the alarm by pressing **standby** to clear the alarm and return to hand steering, before you attempt to resolve the problem.
- In some situations, the autopilot will raise more than one alarm. When you have dealt with the first alarm, the autopilot will display the next alarm.

<table>
<thead>
<tr>
<th>ALARM MESSAGE</th>
<th>CAUSE and SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO RELEASE</td>
<td>Possible fault with rudder position sensor – check connections. OR Stern (I/O) drives only – you have taken manual control of steering with AutoRelease on. The alarm cancels automatically after 10 seconds.</td>
</tr>
<tr>
<td>CURRENT and LIMIT</td>
<td>Serious drive failure – the drive is taking too much current due to short-circuit or jamming. Check the drive unit.</td>
</tr>
<tr>
<td>DRIVE and STOPPED</td>
<td>The autopilot is unable to turn the rudder (this occurs if the weather load on helm is too high, or if the rudder position sensor has passed beyond the preset rudder limits or rudder end-stops). Check drive and rudder position sensor.</td>
</tr>
<tr>
<td>LOW and BATTERY</td>
<td>Supply voltage has dropped below acceptable limits. To respond to a Low Battery alarm: • press standby to clear the alarm and return to hand steering • start the engine to recharge the battery</td>
</tr>
<tr>
<td>LRN FAIL 1, 2 or 4</td>
<td>AutoLearn not completed successfully. Failure codes: 1 = AutoLearn has not been carried out (default setting) 2 = AutoLearn failed, usually due to manual interruption 4 = AutoLearn failed, probably due to drive or compass failure Repeat the AutoLearn procedure.</td>
</tr>
<tr>
<td>MOT POW and SWAPPED</td>
<td>Motor cables are connected to power terminals (and power cables are connected to motor terminals) at course computer. Turn off power and swap over connections.</td>
</tr>
<tr>
<td>ALARM MESSAGE</td>
<td>CAUSE and SOLUTION</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>NO DATA</td>
<td>Caused by any of the following situations:</td>
</tr>
<tr>
<td></td>
<td>• the compass is not connected</td>
</tr>
<tr>
<td></td>
<td>• the autopilot is in Wind Vane mode and it has not received wind angle data for 30 seconds</td>
</tr>
<tr>
<td></td>
<td>• the autopilot is in Track mode and:</td>
</tr>
<tr>
<td></td>
<td>• the autopilot is not receiving SeaTalk navigation data, or</td>
</tr>
<tr>
<td></td>
<td>• the position sensor (GPS, Loran, Decca) is receiving a low strength signal – this will clear when the signal improves</td>
</tr>
<tr>
<td></td>
<td>Check the connections to the compass and/or wind instrument and/or navigator.</td>
</tr>
<tr>
<td></td>
<td>Note: The autopilot stops adjusting the heading as soon as it loses data.</td>
</tr>
<tr>
<td>NO PILOT</td>
<td>The control unit is not receiving data from the course computer.</td>
</tr>
<tr>
<td></td>
<td>Check connections and check course computer is switched on.</td>
</tr>
<tr>
<td>RG FAIL</td>
<td>GyroPlus yaw sensor has failed:</td>
</tr>
<tr>
<td></td>
<td>• If you have a Type 150G/400G course computer with internal GyroPlus sensor – call a Raymarine service agent.</td>
</tr>
<tr>
<td></td>
<td>• If you have a Type 150/400 course computer with external GyroPlus yaw sensor – check the sensor and connections, then call a Raymarine service agent.</td>
</tr>
<tr>
<td>SEATALK and FAIL 1 or 2</td>
<td>SeaTalk data problem on one of the SeaTalk lines — check connections.</td>
</tr>
<tr>
<td>SEATALK and FAIL</td>
<td>The control unit cannot transmit data to the SeaTalk system. Make sure all SeaTalk cables are connected properly.</td>
</tr>
</tbody>
</table>
4.2 General maintenance

Routine checks

CAUTION:
The control unit does not contain any user serviceable parts. It should be serviced only by authorized Raymarine service technicians.

The control unit is a sealed unit. As a result, user maintenance is limited to the following checks:

- make sure all cable connectors are firmly attached
- examine the cables for signs of wear or damage – replace any damaged cables

Cleaning the display

CAUTION:
Take care when cleaning the display. Avoid wiping the display screen with a dry cloth as this could scratch the screen coating.
If necessary, only use a mild detergent.

- Never use chemical or abrasive materials to clean the control unit.
  If it is dirty, wipe it with a clean, damp cloth.
- In certain conditions, condensation may appear inside the display screen. This will not harm the unit, and you can clear it by switching on the illumination for a short time.

EMC advice

- When powered up, all electrical equipment produces electromagnetic fields. These can cause adjacent pieces of electrical equipment to interact with one another, with a consequent adverse effect on operation.
- To minimize these effects and enable you to get the best possible performance from your Raymarine equipment, guidelines are given in the installation instructions, to enable you to ensure minimum interaction between different items of equipment, i.e. ensure optimum Electromagnetic Compatibility (EMC).
• Always report any EMC-related problems to your nearest Raymarine dealer. We use such information to improve our quality standards.
• In some installations, it may not be possible to prevent the equipment from being affected by external influences. In general this will not damage the equipment but it can lead to spurious resetting action, or momentarily may result in faulty operation.

4.3 Product support

Raymarine products are supported by a worldwide network of distributors and Authorized Service Representatives. If you encounter any difficulties with this product, please contact either your national distributor, service representative, or the Raymarine Technical Services Call Center. Refer to the back cover or the Worldwide Distributor List for contact details.

Before you consider returning the autopilot, make sure that the power supply cable is sound and that all connections are tight and free from corrosion. If the connections are secure, refer to the Fault Finding section in this chapter (see page 36).

If you cannot trace or rectify the fault, contact your nearest Raymarine dealer or Service Center, specifying:
• the control unit and course computer serial numbers:
  • the control unit serial number is printed on its rear cover
  • the course computer serial number is printed under its connector cover
• the control unit and course computer software version numbers

The following illustration shows how to display the software information:

• press and hold standby for 4 seconds:
  • after 2 seconds you will see the DISPLAY CAL screen
  • then after another 2 seconds you see control unit software version
• press disp to display the course computer software version
• press disp again to display the total number of hours the autopilot has been used in Auto mode (Note: Type 100/300 systems do not display hours used.)
Chapter 4: Fault Finding & Maintenance

Product details table

For future reference, you may want to use this table to record serial and software information for your autopilot system:

<table>
<thead>
<tr>
<th></th>
<th>Serial number</th>
<th>Software version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control unit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course computer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hours used</td>
<td></td>
<td>hours</td>
</tr>
</tbody>
</table>

Software Information

```
<table>
<thead>
<tr>
<th>STANDBY</th>
<th>120°</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>VERSION</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
| 00:36 | 1 HRS |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
|       |       |
```

```
| VER 200 |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
```

```
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
```

```
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
```

```
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
```

```
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
```

```
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
```

```
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
|         |       |
```
Part 2: Installing the ST7001+
Part 2: Installing the ST7001+
Chapter 5: Installing the ST7001+

The sections in this chapter explain how to install the ST7001+ control unit and connect it to an autopilot system:

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Select the location</td>
<td>46</td>
</tr>
<tr>
<td>5.2</td>
<td>Control unit installation</td>
<td>49</td>
</tr>
<tr>
<td>5.3</td>
<td>SeaTalk connections</td>
<td>50</td>
</tr>
<tr>
<td>5.4</td>
<td>NMEA connections</td>
<td>51</td>
</tr>
<tr>
<td>5.5</td>
<td>Functional test – repeater units only</td>
<td>54</td>
</tr>
</tbody>
</table>

Tools required

To install the ST7001+ control unit you will need the following items:

- tape measure (metric/imperial)
- pencil and center punch
- pliers
- sandpaper/file to smooth cut edges
- additional SeaTalk cables (if required – see page 51)
- 90 mm hole cutter (for the control unit aperture)
- drill and 5 mm (1/32 in) drill bit

Parts supplied

- control unit and sun cover
- fixing studs (x4) and thumb nuts (x4)
- self-adhesive gasket
- 9 m (29 ft 6 in) SeaTalk cable
5.1 Select the location

**Site requirements**

Locate the ST7001+ control unit so it is:

- within easy reach from the steering position
- viewable straight on, or with a maximum viewing angle of 30°
- protected from physical damage
- at least 230 mm (9 in) from any compass
- at least 1 m (3 ft) from any radio or radar receivers or transmitters

The selected location should also:

- be clean, smooth and flat
- be accessible from behind (so you can secure and run cables)
- have sufficient space to accommodate the rear of the control unit and connectors
- allow at least 6 mm (1/4 in) between adjacent control units/instruments so you can fit their sun covers
- meet the cabling and EMC installation guidelines detailed below

**CAUTION:**

The ST7001+ front cover is waterproof when installed according to the following instructions. However, you must protect the rear of the control unit from water in a ventilated and drained area.
Any moisture or water vapor in this area could cause damage by coming into contact with electrical connections, or condensation by entering the control unit through its breathing hole.

**Cabling guidelines**

- consider how you will run cables to and from the control unit
- avoid running cables through bilges where possible
- avoid running cables close to fluorescent lights, engines, radio transmitting equipment etc.

**EMC installation guidelines**

All Raymarine equipment and accessories are designed to the best industry standards for use in the recreational marine environment. Their design and manufacture conforms to the appropriate Electromagnetic Compatibility (EMC) standards, but correct installation is required to ensure that performance is not compromised.

Although every effort has been taken to ensure that they will perform under all conditions, it is important to understand what factors could affect the operation of the product.

The guidelines given here describe the conditions for optimum EMC performance, but it is recognized that it may not be possible to meet all of these conditions in all situations. To ensure the best possible conditions for EMC performance within the constraints imposed by any location, always ensure the maximum separation possible between different items of electrical equipment.

For optimum EMC performance, it is recommended that wherever possible:

- Raymarine equipment and cables connected to it are:
  - At least 3 ft (1 m) from any equipment transmitting or cables carrying radio signals e.g. VHF radios, cables and antennas. In the case of SSB radios, the distance should be increased to 7 ft (2 m).
  - More than 7 ft (2 m) from the path of a radar beam. A radar beam can normally be assumed to spread 20 degrees above and below the radiating element.
  - The equipment is supplied from a separate battery from that used for engine start. Voltage drops below 10 V, and starter motor
transients, can cause the equipment to reset. This will not damage
the equipment, but may cause the loss of some information and
may change the operating mode.

- Raymarine specified cables are used. Cutting and rejoining these
cables can compromise EMC performance and must be avoided
unless doing so is detailed in the installation manual.

- If a suppression ferrite is attached to a cable, this ferrite should not
be removed. If the ferrite needs to be removed during installation
it must be reassembled in the same position.

**EMC suppression ferrites**
The following illustration shows typical cable suppression ferrites
used with Raymarine equipment. Always use the ferrites supplied by
Raymarine.

![EMC suppression ferrites](image)

**Connections to other equipment**
If your Raymarine equipment is to be connected to other equipment
using a cable not supplied by Raymarine, a suppression ferrite MUST
always be attached to the cable near to the Raymarine unit.
5.2 Control unit installation

To fit the control unit:

1. Apply the template (supplied at the back of this handbook) to the selected bulkhead.
2. Mark the centers of the four fixing holes and the cable boss.
3. Drill four 5 mm (3/16 in) diameter holes for the fixing studs.
4. Use a 90 mm (3.55 in) diameter cutter to drill the hole for the cable boss.
5. Peel the protective sheets from the self-adhesive gasket, then stick the gasket into position on the rear of the control unit.
6. Screw the four fixing studs into the threaded sockets on the rear of the control unit.
7. Pass the SeaTalk/NMEA cables through the bulkhead and connect them to the appropriate terminals (as described later in this chapter).
8. Assemble the control unit to the bulkhead.
9. Secure the control unit with the thumb nuts provided.

**Hand-tighten** the thumb nuts – do NOT use a wrench.
5.3 SeaTalk connections

The SeaTalk connections on the ST7001+ provide it with its 12 V DC power supply and allow it to share data with SeaTalk equipment.

**Connecting to a course computer**

If you are using the ST7001+ as the main control unit for a course computer autopilot system, connect it directly to the course computer SeaTalk terminals. To do this:

- cut off the moulded plug at one end of the SeaTalk cable
- strip 5 mm (1/2 in) of insulation from each wire
- then connect to the course computer terminals as shown

**Note:** If you are connecting the ST7001+ to a course computer autopilot system that includes other control units, refer to the information contained in the Autopilot System Installation Guide.

**Connecting to SeaTalk**

If you are using the ST7001+ as an additional control unit, use a SeaTalk cable to connect it to another SeaTalk unit as shown.
Chapter 5: Installing the ST7001+

We supply the ST7001+ with a 9 m (29 ft 6 in) SeaTalk cable as standard. Depending on your installation, you may need to obtain alternative or additional SeaTalk cables (as shown in the following illustration).

### 5.4 NMEA connections

The ST7001+ has a set of NMEA inputs so it can receive data in NMEA 0183 format from navigation or wind instruments. It can use this data to operate in Track or Wind Vane modes.

**Note:** If your ST7001+ control unit is part of a course computer system, you can connect additional NMEA equipment to other parts of the system. To decode the maximum amount of NMEA data (so it can be transmitted onto SeaTalk), connect the navigator to the course computer NMEA terminals. Refer to the Autopilot System Installation Guide for more information.

#### Receiving NMEA data

**NMEA data formats**

The ST7001+ can decode the following NMEA 0183 navigation and wind data received:
Installing the ST7001+

Information NMEA 0183 data

<table>
<thead>
<tr>
<th>Description</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latitude and Longitude</td>
<td>GLL, RMC, RMA, GLP, GOP, GXP, GGA, GDP</td>
</tr>
<tr>
<td>Course Over Ground</td>
<td>VTG, RMC, RMA</td>
</tr>
<tr>
<td>Speed Over Ground</td>
<td>VTG, RMC, RMA</td>
</tr>
<tr>
<td>Cross Track Error</td>
<td>APB, APA, RMB, XTE</td>
</tr>
<tr>
<td>Bearing to Waypoint</td>
<td>APB, BWR, BWC, RMB</td>
</tr>
<tr>
<td>Distance to Waypoint</td>
<td>BWR, BWC, RMB</td>
</tr>
<tr>
<td>Waypoint Number</td>
<td>APB, APA, BWR, BWC, RMB</td>
</tr>
<tr>
<td>Apparent Wind Speed</td>
<td>VWR, MWV</td>
</tr>
<tr>
<td>Apparent Wind Angle</td>
<td>VWR, MWV</td>
</tr>
<tr>
<td>Speed Through Water</td>
<td>VHW</td>
</tr>
<tr>
<td>Depth</td>
<td>DBT</td>
</tr>
<tr>
<td>Water Temperature</td>
<td>MTW</td>
</tr>
</tbody>
</table>

**Note:** The ST7001+ only decodes the last four characters of waypoint names. This means that the last four characters of long waypoint names must be unique for the waypoint advance function to work.

NMEA cabling

Connect the NMEA navigator or wind instrument to the **NMEA IN** terminals on the rear of the ST7001+ control unit. You can only connect a single piece of NMEA equipment to these terminals.

![Diagram of NMEA cabling](image-url)
Chapter 5: Installing the ST7001+

NMEA cable connectors

NMEA connections are made using spade connectors. When fitting the spade connectors, make sure the connector fits securely over the blade and not between the connector and its plastic insulating cover. Incorrect fitting will give intermittent contact which will lead to faulty autopilot operation.

Transmitting NMEA data

Transmitting NMEA data on SeaTalk

If the ST7001+ receives any of the NMEA data shown above, and the equivalent data is not present on SeaTalk, it will transmit the data onto SeaTalk to make it available to other SeaTalk instruments:

- the ST7001+ transmits depth information in the units defined by the first page in the data page rollover
- the ST7001+ always transmits water temperature in °C

Transmitting NMEA data to other NMEA equipment

If you want to transmit NMEA information to non-SeaTalk equipment you can either:

- connect the NMEA equipment to the NMEA outputs on the course computer (if your system includes a course computer) or
- use a SeaTalk/NMEA Interface (part number: E85001) to convert SeaTalk data to NMEA data (if your system does not include a course computer)
5.5 Functional test – repeater units only

If you have installed the ST7001+ as an additional control unit for an existing autopilot system, complete the following checks to make sure you have installed the control unit correctly.

Note: If you have connected the ST7001+ as part of a new autopilot installation, you MUST calibrate the autopilot as described in Chapter 6: Commissioning the Autopilot.

Switch on

1. When you have installed the ST7001+ control unit, switch on the main power breaker.
2. If the control unit is active and the system operating, the control unit will beep and display the control unit type (ST7001) for 2 seconds.
3. After 2 seconds, the control unit will display the STANDBY screen.

SeaTalk and NMEA connections

If you have connected the ST7001+ to other SeaTalk instruments or control units, check the links as follows:

1. Select display lighting level 3 (LAMP 3) on one of the other SeaTalk instruments or control units.
2. The ST7001+ should immediately switch on its display lighting:
   • if the lighting does not switch on, there is a fault in the SeaTalk cabling between the ST7001+ and the other units
3. If you have connected an NMEA navigator to the control unit NMEA inputs, check the connections as described on page 57.

Troubleshooting

• If the head does not beep, check the fuse/circuit breaker.
• If the display shows the SEATALK FAILURE or NO DATA alarm message, check the SeaTalk connections.
Chapter 6: Commissioning the Autopilot

WARNING:

All new autopilot system installations MUST be calibrated.

If you have connected the ST7001+ to a newly installed Type 150/150G or Type 400/400G course computer autopilot system, you must commission the system. This involves a series of dockside checks and then the seatrial calibration:

6.1 Dockside Checks
With the boat safely tied up, you need check the autopilot system and adjust some key autopilot settings.

6.2 Seatrial Calibration
The purpose of this seatrial is to calibrate the compass and optimize the autopilot set-up for your boat.

Note: If you have connected the ST7001+ to a non-150/400 autopilot system refer to the notes in the Appendix.
6.1 Dockside Checks

With the boat safely tied up, complete the following dockside checks:

1. Switch on.
2. Check the SeaTalk and NMEA connections.
3. Check the autopilot operating sense.
4. Set the basic autopilot parameters.

**WARNING:**

For safe control of your boat, you MUST complete the dockside checks before starting the initial seatrial.

**Step 1 - Switch on**

1. When you have installed the ST7001+ control unit and the rest of the autopilot system, switch on the main power breaker.
2. If the control unit and system are active, the control unit will beep and display the control unit type (ST7001) for 2 seconds.
3. You will then see a CALIBRATE REQUIRED message for 4 seconds if either: the vessel type is not selected (see page 59), or the compass is not calibrated (see page 64).
4. The control unit will then display the STANDBY screen.
5. Check that the STANDBY screen displays a live compass heading and a rudder angle.

**Troubleshooting**

- If the head does not beep or the display is blank, check the fuse/circuit breaker and the SeaTalk fuse in the course computer.
- If the display shows the SEATALK FAILURE or NO DATA alarm message, check the SeaTalk connections.
- If the STANDBY screen does not display a live compass heading or a rudder angle, check the sensor connections.
Step 2 - Check the SeaTalk and NMEA connections

SeaTalk connections
If you have connected the ST7001+ to other SeaTalk instruments or control units, check the links as follows:
1. Select display lighting level 3 (LAMP 3) on one of the SeaTalk instruments or control units.
2. The ST7001+ should immediately switch on its display lighting:
   • if the lighting does not switch on, there is a fault in the SeaTalk cabling between the ST7001+ and the other units

NMEA navigator connections
If you have connected the ST7001+ to an NMEA navigator, check the links by displaying the default navigation data pages (XTE/BTW/DTW):
• press disp to display the first data page, and check that this page shows the expected data
• press disp again to check each successive data page
If the display shows dashes instead of data values, the cause could be one or more of the following:
• navigator not switched on or not transmitting an active waypoint
• cabling error: check for open circuit, short circuit, reversed wires
• navigator is not configured to transmit the required data format

Wind instrument connections
If you have connected the autopilot to an NMEA or SeaTalk wind instrument, check the links by pressing standby and auto together:
• the ST7001+ should display the Wind Vane mode screen, with the locked wind angle and locked heading:
• if nothing happens when you press standby and auto together, the ST7001+ is not receiving wind data: check the wind instrument and connections
Step 3 - Check the autopilot operating sense

Check the rudder position sensor

1. Turn the wheel manually to starboard.
2. Check that the rudder bar on the display moves to starboard.
   If the rudder bar display moves the wrong way:
   • turn off the power
   • reverse the red and green wires connected to the RUDDER inputs on the course computer
   • switch on the power and re-check

Check the autopilot steering sense

1. Manually center the wheel, then press the auto key so the autopilot is in Auto mode. Check that the display shows AUTO.
   Be ready to press standby if the rudder moves hardover.
2. Press the +10 key once. Check that the rudder moves to starboard a few degrees and then stops.
   • if the rudder drives hardover, immediately press standby to prevent further rudder movement

If the rudder moves to port or the rudder drives hardover:

• press standby
• turn off the power
• reverse the motor wires connected to the course computer
• switch on the power and re-check

Note: If the rudder overshoots and has to drive back or starts to hunt back and forth, you will need to increase the rudder damping level as described in Step 3 (see page 62).
Chapter 6: Commissioning the Autopilot

Step 4 - Adjust basic autopilot settings

Note: For more information about these calibration settings refer to the following pages: vessel type (page 94), drive type (page 94), rudder sensor alignment (page 94), rudder limits (page 95).

The autopilot system has four main calibration groupings, as illustrated on the following page (for more information about these groupings see Chapter 7: Adjusting Autopilot Settings).

The next step in the dockside set-up is to enter Dealer Calibration mode so you can adjust some basic autopilot settings.

Enter Dealer Calibration mode

1. Start with the autopilot in Standby mode.
2. Enter DEALER CAL as follows:
   • press and hold the standby key for two seconds to enter the Calibration mode
   • when the screen shows DISPLAY CAL, press the disp key or up/down arrow keys until you see the DEALER CAL screen
   • press the auto key: the display will change to CAL
   • press the -1 and +1 keys together to enter Dealer Calibration (DEALER CAL)

Set the vessel type

1. Use the disp key to page through the Dealer Calibration screens until you reach the VESSEL TYPE screen.
2. Use the -1 or +1 keys to select a vessel type suitable for your boat:
   • Displacement: DISPLACE
   • Semi Displacement: SEMI DISPLACE
   • Planing: PLANING
   • Stern (I/O) Drive: STERN DRV
   • Work Boat: WORK BOAT
   • Sail Boat: SAIL BOAT

Note: When you select the vessel type, the autopilot will select appropriate defaults for various other calibration settings.
Commissioning the Autopilot

60 ST7001+ Autopilot Control Unit - Owner's Handbook

Calibration Mode Overview

Calibration Mode

**STANDBY** mode

2 seconds (saves changes)

**DISPLAY CAL**

- **standby**
- Display bar selection
- Pop-up pilot time-out
- Data pages 1 to 15

**SEATRIAL CAL**

- **standby**
- Swing compass
- Compass deviation
- Align heading
- Align rudder
- AutoLearn start
- AutoLearn pass/fail

**USER CAL**

- **standby**
- AutoTack angle
- Gybe inhibit
- Wind type
- Wind response (WindTrim)
- Response level
- Magnetic variation

DEALER CAL

- **standby**
- -1 and +1
- Calibration lock
- Vessel type
- Drive type
- Align rudder
- Rudder limit
- Rudder gain
- Counter rudder
- Rudder damping
- AutoTrim
- Response level
- Turn rate limit
- Off course alarm angle
- AutoRelease (sterndrive)
- AutoTack angle
- Gybe inhibit
- Wind type
- Wind response (WindTrim)
- Cruise speed
- AutoAdapt
- Latitude
- Magnetic variation
- Autopilot reset

Within DISPLAY CAL, USER CAL, SEATRIAL CAL and DEALER CAL:

- press **disp** or **➔** to move forwards through items (*sail boats only)
- press **disp** for 1 second or **➔** to move backwards
- use -1, +1, -10, +10 to adjust settings
- press **standby** for 2 seconds to save changes

1 second

1 second

2 seconds

1 second
Set the drive type

1. With the autopilot still in Dealer Calibration, use the disp key to page through the calibration screens until you reach the Drive Type screen (DRIVE TYP).
2. Use the -1 or +1 keys to select the appropriate drive type:
   - 3 = Linear drive, rotary drive or I/O (stern) drive
   - 4 = Hydraulic pump or hydraulic linear drive
   - 5 = Constant running hydraulic pump solenoids

Align the rudder position sensor

1. With the autopilot still in Dealer Calibration, press the disp key to page through the calibration screens until you reach the ALIGN RUDDER screen.
2. Use the wheel to manually center the rudder.
3. Use the -1 and +1 keys to adjust the displayed rudder bar so its offset is zero:
   - you can only use this screen to adjust offsets within ±7°; if the offset is beyond these limits, you will need to physically adjust the sensor’s alignment (as described in the Autopilot System Installation Guide)

Note: Alternatively, you can zero the rudder bar with the boat underway during the initial seatrial, by manually steering a straight course then accessing the ALIGN RUDDER screen in Seatrial Calibration to adjust the offset.

Set the rudder limits

1. With the autopilot still in Dealer Calibration press the disp key to page through the Dealer Calibration screens until you reach the RUDDER LIMIT screen
2. Turn the wheel to move the rudder:
   - to the port end stop and note the angle
   - to the starboard end stop and note the angle
3. Use the -1, +1, -10 and +10 keys to set the rudder limit to 5° less than the lowest angle you have noted.
Adjust the rudder damping

Note: You only need to adjust the rudder damping value if the autopilot ‘hunts’ when trying to position the rudder. Increasing the rudder damping value reduces hunting.

To adjust the rudder damping:

1. Use the **disp** key to page through the Dealer Calibration screens until you reach the RUDD DAMP screen.
2. Use the **-1** or **+1** keys to adjust the rudder damping:
   - increase the damping one level at a time until the autopilot stops hunting, and always use the lowest acceptable value

Save the new settings

When you have adjusted these basic settings in Dealer Calibration:

- press and hold **standby** for two seconds to store the changes
- the screen will show **DEALER CAL** then the **STANDBY** screen
6.2 Seatrial Calibration

When you have completed the dockside calibration, you must complete the setup by taking the boat on a short seatrial to:

1. Calibrate the compass:
   - complete the automatic deviation correction
   - align the compass heading
2. Adjust the autopilot settings to suit your boat:
   - automatically on Type 150G/400G autopilot systems
   - manually on Type 150/400 (non-GyroPlus) and Type 100/300 autopilot systems

Seatrial safety

Note: You can return to hand steering at any time during the seatrial by pressing standby.

You should only perform the initial seatrial:

- when you have successfully completed the dockside calibration
- in conditions of light wind and calm water, so you can assess autopilot performance without the influence of strong winds or large waves
- in waters that are clear of any obstructions, so the boat has plenty of clear space to maneuver

Note: Before you start your seatrial, make sure you have switched on any ancillary equipment – such as a GPS (providing course over ground (COG), speed over ground (SOG) and latitude (LAT) data) or a speed log (providing speed through the water). This information will help the autopilot achieve its best performance.

CAUTION: EMC conformance

Always check the installation before going to sea to make sure that it is not affected by radio transmissions, engine starting etc.
Calibrating the compass

Note: This section does not apply if you have connected an NMEA compass to your autopilot system. Refer to the handbook supplied with the NMEA compass for information about calibration.

Depending on your boat type, deviating magnetic fields can cause significant compass errors. The correction procedure reduces these errors to a few degrees, so you MUST perform this procedure as the first item in your initial seatrial. The autopilot will then automatically correct the fluxgate compass.

CAUTION:
If you fail to complete the deviation correction, your autopilot’s performance will be impaired on some compass headings.

The deviation correction procedure (swinging the compass) involves turning your boat in slow circles so the autopilot can determine the deviation and calculate any correction required. You must carry out this procedure in calm conditions and preferably on flat water.

Automatic compass deviation correction

1. With the pilot in Standby mode, enter Seatrial Calibration as follows (see the following illustration):
   - press and hold the standby key for two seconds to enter Calibration mode
   - when you see the DISPLAY CAL screen, press the disp key or up/down arrow keys until you see the SEATRIAL CAL screen
   - press the auto key to enter Seatrial Calibration

   Note: If you cannot access SeaTrial Calibration, you need to turn off the calibration lock in Dealer Setup (see page 92).

2. You should see the SWING COMPASS screen when you first enter Seatrial Calibration. (If not, use the disp key to page through the Seatrial Calibration items until you see SWING COMPASS)

3. When you are ready to start, press the +1 key to select SWING COMPASS On. You will then see the TURN BOAT screen.
Chapter 6: Commissioning the Autopilot

Commissioning the Autopilot

1. Enter Seatrial Calibration

   - **STANDBY**: 128°
   - **DISPLAY**: CAL
   - **SEATRIAL**: CAL
   - **COMPASS**: OFF

2. Compass deviation correction

   - **COMPASS SWING**: OFF
   - **TURN BOAT**: On
   - **Start turning boat** (see below)

   - Turn boat in slow circles so:
     - boat’s speed stays below 2 knots
     - each circle takes at least 2 minutes

   - Minimum of 2 circles
   - Keep turning the boat until you see the DEVIATION screen

   - **DEVIATION**: 3°
   - **Autopilot heading**: 023°

3. Compass heading alignment

   a. **Coarse adjustment**: If COG is available from GPS, press to set autopilot heading to COG value, then fine tune manually (see below).

   b. **Fine adjustment**: If COG is not available (or after setting heading to COG), align autopilot heading manually:

   - **Autopilot heading**: 023°
   - **Steering compass**: Known heading

   Adjust the autopilot heading so it shows the same value as the boat’s steering compass

4. Save changes

   - **STANDBY**: 128°

   - **To**:
     - save deviation correction
     - save heading alignment
     - return to STANDBY mode
4. Start turning the boat in slow circles (with the boat’s speed below 2 knots). You will need to complete at least two circles, taking at least 2 minutes to complete each 360°:
   • the display will show a TOO FAST message if you turn the boat too quickly for the course computer to correct the compass — if you see this message apply less helm to turn in a larger circle.

**Note:** If necessary, you can quit the correction process by pressing the **standby** or **disp**. If you then want to repeat the deviation correction, return to the **SWING COMPASS** screen.

5. Continue slowly turning the boat until the control unit beeps and displays the **DEVIATION** screen to indicate that the autopilot has completed the deviation correction. This screen shows the maximum deviation encountered over 360° (not as an east/west value).

**Note:** If the deviation figure exceeds 15° or the display shows no deviation value, the compass is being affected by ferrous objects on your boat. You should move the compass to a better location. Higher deviation figures are acceptable on steel boats.

### Aligning the compass heading

1. Once the deviation is displayed, press the **disp** key to move onto the Heading Alignment screen (ALIGN HDG).
2. Manually steer the boat on a steady course at a speed which enables you to hold that course.
3. If you have a GPS connected to your autopilot:
   • increase the boat speed to more than 3 knots
   • press the **auto** key: the autopilot will then set the heading to agree with the COG (course over ground) heading received from the GPS
   • because many factors can cause a difference between heading and COG (such as tides and leeway affecting the boat) you must then fine-tune the heading alignment so it matches the boat’s steering compass or a known transit bearing
4. Use **-1, +1, -10 and +10** to adjust the displayed heading until it matches boat’s steering compass or a known transit bearing.
5. Press and hold **standby** for 2 seconds to exit Seatrial Calibration and save the new compass settings.
**Adjusting the heading alignment**

If you experience difficulties with compass alignment, you can check the compass alignment after completing the deviation correction procedure (swinging the compass). After completing the initial compass calibration, you can make further adjustments to the alignment without swinging the compass again.

Although the compass calibration removes most of the alignment error, small errors (of the order of a few degrees) will probably remain. These will vary depending on the heading.

Ideally, you should check the heading reading against a number of known headings, plot a deviation curve, and determine the heading alignment value that will give the lowest average alignment error. You can then enter this value on the Heading Alignment screen, as described above.

If the average heading error is more than 5°, you should perform the compass deviation correction procedure again, circling more slowly and in more favorable conditions.
Adjusting autopilot settings

The next stage of the seatrial is to set key autopilot parameters that affect the autopilot’s steering characteristics. You can do this in one of two ways:

- **using AutoLearn:** Type 150G and Type 400G autopilot systems use AutoLearn – a self-learning calibration feature that automatically adjusts rudder gain, counter rudder and AutoTrim to suit your boat
- **manual set-up:** if you have a Type 150/400 (non-GyroPlus) or Type 100/300 autopilot you will need to adjust these settings manually – as described on page 71

**Note:** For a full explanation of the parameters set during the AutoLearn, and how to adjust them manually, refer to the manual set-up section.

**AutoLearn: Type 150G/400G systems**

**WARNING:**

The AutoLearn process requires a significant amount of CLEAR SEA SPACE in front of the boat. The autopilot will take the boat through a number of zig-zag maneuvers until it has acquired enough data. If you need to cancel the AutoLearn at any time, press the **standby** key to gain manual control of the boat.

---

**AutoLearn maneuvers**

Wind

At least 0.25 nm (500 m) of clear sea space

At least 0.04 nm (100 m) of clear sea space

MINUTE (approximately)
Chapter 6: Commissioning the Autopilot

AutoLearn calibration

1. Enter Seatrial Calibration

2. Start the AutoLearn

To prepare for the AutoLearn:
• steer straight ahead at cruising speed (planing boats – off the plane)
• head into wind and waves

Check you have sufficient clear sea space before proceeding

3. Boat completes AutoLearn

AutoLearn successful

Note: If you see a LRN FAIL message, press disp to return to the AUTOLEARN screen then repeat from Step 2

4. Save new settings

To:
• save AutoLearn calibration settings
• return to STANDBY mode

If you need to cancel the AutoLearn, press or
1. Access the Autolearn screen in Seatrial Calibration:
   - from Standby mode, press **standby** for 2 seconds, then **disp** twice to see the SEATRIAL CAL screen
   - then press **auto** to enter Seatrial Calibration, and **disp** 4 times until you see the AUTOLEARN screen

2. Prepare to start the AutoLearn:
   - **power boats**: steer straight ahead (with the rudder centered), and set the boat’s speed at 8 to 15 knots – planing boats should be off the plane
   - **sail boats**: with the sails down, steer straight ahead (with the rudder centered) and motor the boat at typical cruising speed
   - if conditions are not calm, head **into** the wind and waves

3. When you are ready to start the AutoLearn, press the **+1** key to select AUTOLEARN On.

4. The screen will then show the CLEAR TO MANEUVER message. Press the **auto** key to start the AutoLearn process:
   - the boat will start its AutoLearn maneuvers and the display will show a LEARNING message, with a number that increases to show that the AutoLearn is in progress
   - the number will increase as the autopilot steps through the various maneuvers
   - typically, the AutoLearn will be complete within 7 to 27 steps (depending on boat characteristics and sea conditions)

**Note:** If you need to cancel the AutoLearn for any reason, press the **standby** or **disp** key.

5. When the autopilot has finished learning, the control unit will beep and the display will change to LRN PASS or LRN FAIL:
   - LRN PASS = AutoLearn completed successfully
   - LRN FAIL = AutoLearn was not successful and should be repeated again. Failure codes:
     - LRN FAIL 1 = AutoLearn has not been carried out
     - LRN FAIL 2 = AutoLearn failed, due to manual interruption
     - LRN FAIL 4 = AutoLearn failed, probably due to drive or compass failure

6. Press and hold the **standby** key for two seconds to store the new calibration settings.

The pilot is now fully calibrated and ready for use. The only setting you should now need to adjust is the response level (see page 7).
**Manual set-up: Type 150/400 & Type 100/300**

If you have a Type 150/400 (non-GyroPlus) or Type 100/300 autopilot system you need to manually adjust the rudder gain, counter rudder and AutoTrim settings, based on your observations of the boat’s performance under autopilot control.

*Adjust these settings when motoring your boat at cruising speed.*

*On sail boats, repeat if necessary under sail to optimize the pilot.*

**Checking autopilot operation**

Before manually adjusting any of these settings, familiarize yourself with basic autopilot operation:

1. Steer onto a compass heading and hold the course steady.
   
   If necessary, control the boat manually for a while to check how the boat steers.

2. Press **auto** to lock onto the current heading. The autopilot should hold a constant heading in calm sea conditions.

3. Use the **-1, +1, -10 and +10** keys to check how the autopilot alters the course to port and starboard in multiples of 1° and 10°.

4. Press **standby** to return to hand steering.

**Adjusting the rudder gain**

Boats can vary widely in their response to helm, and by adjusting the rudder gain you can change the autopilot’s steering characteristics. Rudder gain is a measure of how much helm the autopilot applies to correct course errors – higher settings mean more rudder is applied.

Complete the following test to determine whether the rudder gain is set correctly:

1. Set **RESPONSE** to level 2:
   
   - press the **resp** key, use the **-1 or +1** key to adjust the setting, then press **disp**

2. Sail your boat at cruising speed in clear water:
   
   - you will find it easiest to recognize the steering response in calm sea conditions where wave action does not mask basic steering performance

3. Press **auto** to enter Auto mode, then alter course by 40°:
   
   - if the rudder gain is adjusted **correctly**, the 40° course change should result in a crisp turn followed by an overshoot of no more than 5°
Commissioning the Autopilot

- if the rudder gain setting is too high, the 40° course change will result in a distinct overshoot of more than 5° and there may be a distinct ‘S’ in the course (A). Correct this oversteer by reducing the rudder gain setting.

- if the rudder gain is too low, the boat’s performance will be sluggish – it will take a long time to make the 40° turn and there will be no overshoot (B). Correct this understeer by increasing the rudder gain setting.

To adjust the rudder gain:

1. Access the RUDD GAIN screen in Dealer Calibration.
2. Use the -1 or +1 keys to adjust the rudder gain.
3. Press and hold standby for 2 seconds to save the changes.
4. Press auto to check the autopilot performance in Auto mode.

Adjusting the counter rudder

If you intend to use RESPONSE level 3 on a Type 150/400 (non-GyroPlus) or Type 100/300 autopilot system, you will need to adjust the counter rudder. Counter rudder is the amount of rudder the autopilot applies to try to prevent the boat from yawing off course. Higher counter rudder settings result in more rudder being applied.

To check the counter rudder setting

1. Set RESPONSE to level 3.
2. Sail your boat at cruising speed in clear water.
3. Press auto to switch the autopilot to Auto mode, then make a 90° course change:
Chapter 6: Commissioning the Autopilot

- when gain and counter rudder are both set correctly, the boat performs a smooth continuous turn with minimal overshoot
- if the counter rudder is too low, the boat will still overshoot
- if counter rudder is too high, the boat will ‘fight’ the turn and make a series of short, sharp turns: this results in a very ‘mechanical’ feel as the boat changes course

To adjust the counter rudder:
1. Access the COUNT RUD screen in Dealer Calibration.
2. Use the -1 or +1 keys to adjust the counter rudder.
3. Press and hold **standby** for 2 seconds to save the changes.
4. Press **auto** to check the autopilot performance in Auto mode.

The pilot is now calibrated and ready for use.

**Further adjustments (Type 150/400 and Type 100/300)**

Over time you may need to repeat these adjustments over a range of sea conditions and headings to achieve good overall performance.

You may also need to adjust the **AutoTrim** setting. AutoTrim determines how quickly the autopilot applies ‘standing helm’ to correct for trim changes (caused, for example, by changes in the wind load on the sails or superstructure, or an imbalance of engines).

Gain experience with your autopilot before attempting to adjust the AutoTrim setting. On sail boats you can only evaluate the effect of AutoTrim while under sail.

Increasing the AutoTrim level reduces the time the autopilot takes to get back onto the correct course, but makes the boat less stable:
- if the autopilot gives unstable course keeping and the boat ‘snakes’ around the desired course, decrease the AutoTrim level
- if the autopilot hangs off course for excessive periods of time, increase the AutoTrim level

If you need to adjust AutoTrim, go up one level at a time and use the lowest acceptable value. The possible settings range from OFF (no trim correction) to 4 (fastest trim correction). To adjust the AutoTrim:

1. Access the AUTOTRIM screen in Dealer Calibration.
2. Use the -1 or +1 keys to adjust the AutoTrim level.
3. Press and hold **standby** for 2 seconds to save the changes.
4. Press **auto** to check the autopilot performance in Auto mode.
Commissioning the Autopilot
Chapter 7: Adjusting Autopilot Settings

This chapter explains all of the calibration settings you can adjust on the autopilot system. You will have adjusted many of these settings when commissioning the system (see Chapter 6), and they should not require further adjustment.

Note: Complete the procedures described in Chapter 6 before adjusting any calibration settings.

The sections in this chapter provide explain the Calibration mode and the settings in the 4 calibration groupings:

7.1 Calibration basics
This explains the structure of the Calibration mode, and how to access the four calibration groupings. page 76

7.2 Display Calibration
The Display Calibration grouping allows you to control the ST7001+ display features (bar graph type and data page information). This section also explains how to use data pages to set up the control unit as a remote control for ST60/ST80 instruments. page 79

7.3 User Calibration
The User Calibration grouping includes autopilot settings that you may need to adjust in response to changing sea conditions. page 87

7.4 Seatrial Calibration
The Seatrial Calibration grouping is used specifically for the initial autopilot seatrial (see Chapter 6 for full details). page 91

7.5 Dealer Calibration
The Dealer Calibration grouping controls the main autopilot settings and also the calibration lock. page 92

Note: If you are connecting the ST7001+ to a non-150/400 autopilot system, the calibration groups are different. Refer to the Appendix for more information.
7.1 Calibration basics

Calibration groups

Note: If you are connecting the ST7001+ to a non-150/400 autopilot system, the calibration groups are different. Refer to the Appendix for full details.

The Calibration mode has 4 main calibration groups:

Display Calibration (DISPLAY CAL)
The items in Display Calibration only affect the individual control unit. They are stored in the control unit and do not affect any other control units connected through SeaTalk.

You can adjust the Display Calibration settings as often as necessary – for example, to add or change information displayed on data pages.

User Calibration (USER CAL)
The items in User Calibration vary according to the Vessel Type you have selected in Dealer Calibration.

You will probably need to access User Calibration on a fairly regular basis to adjust the autopilot settings in response to changing conditions.

Seatrial Calibration (SEATRIAL CAL)
The Seatrial Calibration group is specifically designed for use during the initial autopilot seatrial (see page 63 of Chapter 6 for full details).

You should not need to access Seatrial Calibration during normal autopilot operation.

Dealer Calibration (DEALER CAL)
The Dealer Calibration group includes items that have a significant impact on autopilot operation and can affect your boat’s safety.

After you have completed the initial installation and seatrial, you should not normally need to alter the Dealer Calibration values. The items in Dealer Calibration vary according to the Vessel Type you have selected.
Chapter 7: Adjusting Autopilot Settings

Calibration Mode Overview

Calibration Mode Overview

Calibration Mode

2 seconds (saves changes)

STANDBY mode

Dealers CAL

Auto

standby -1 and +1

Calibration lock

Vessel type

Drive type

Align rudder

Rudder limit

Counter rudder

Rudder damping

AutoTrim

Response level

Turn rate limit

Off course alarm angle

AutoTack angle (stem drive)

Gybe inhibit

Wind type

Wind response (WindTrim)

Cruise speed

AutoAdapt

Latitude

Magnetic variation

Autopilot reset

Within DISPLAY CAL, USER CAL, SEATRIAL CAL and DEALER CAL:

- press disp or ↑ to move forwards through items (*sail boats only)
- press disp for 1 second or ↑ to move backwards
- use -1, +1, -10, +10 to adjust settings
- press standby for 2 seconds to save changes
Accessing the Calibration mode

You can only access Calibration mode from Standby mode:

1. With the autopilot in Standby mode, press and hold the standby key for 2 seconds. The display will change to show DISPLAY CAL.
2. Press the disp key or down arrow key to scroll down through the 4 calibration groupings:
   - Display Calibration (DISPLAY CAL)
   - User Calibration (USER CAL)
   - Seatrial Calibration (SEATRIAL CAL)
   - Dealer Calibration (DEALER CAL)

   **Note:** You can go backwards through the groups by pressing and holding the disp key for one second or by using the up arrow key.

3. When you reach the Calibration group you want to access, press the auto key to enter that group:
   To prevent accidental access, we have made entry to Dealer Calibration more difficult than the other groups. After pressing the auto key, the display will show CAL. When you see this, press the -1 and +1 keys together to enter Dealer Calibration.

4. When you have entered one of the Calibration groupings, press disp key or down arrow key to scroll down through the items within that grouping:

   **Note:** You can go backwards through the list by pressing and holding the disp key for one second or by using the up arrow key.

5. When you reach an item you wish to adjust, use the -1, +1, -10 and +10 keys (as appropriate) to change the value.

6. If you then want to adjust settings in another Calibration group, press the standby key and then repeat steps 2 to 5 as necessary.

7. When you have made all the changes you want to make, press and hold the standby key for two seconds to exit Calibration mode and save changes.
7.2 Display Calibration

Display Calibration allows you to select the type of bar graph and heading shown on the ST7001+ display, and control the information shown on the data pages.

Display Calibration screens

Display bar selection

This screen allows you to select the type of bar graph shown at the bottom of the ST7001+ display.

Options

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUDD BAR</td>
<td><strong>Rudder position bar</strong>&lt;br&gt;This is the default setting. It uses the bar graph to show the true rudder angle. Requires rudder position sensor for accurate rudder information.</td>
</tr>
<tr>
<td>STEER BAR</td>
<td><strong>Steer/error bar</strong>&lt;br&gt;This setting uses the bar graph to indicate different information in different operating modes:&lt;br&gt;• Standby: rudder position bar&lt;br&gt;• Auto: heading error bar (in 2° increments)&lt;br&gt;• Track: cross track error (XTE) bar (in 0.02 nm increments)&lt;br&gt;• Wind Vane: wind angle error bar (in 2° increments)</td>
</tr>
<tr>
<td>BAR OFF</td>
<td>No bar displayed.</td>
</tr>
</tbody>
</table>

Heading selection

This screen allows you to display any heading as either a magnetic or true value. During normal autopilot operation the screen will indicate MAG for magnetic headings and TRUE for true headings.

Options

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDG MAG</td>
<td>Magnetic heading.</td>
</tr>
<tr>
<td>HDG TRUE</td>
<td>True heading.</td>
</tr>
</tbody>
</table>
Accessing Display Calibration

STANDBY mode

2 seconds (saves changes)

Calibration Mode

DISPLAY CAL

DEALER CAL

USER CAL

DATA PAGE

To adjust values use

To exit and save changes

2 seconds

Press disp for next page

HDG MAG

POPUP

RUDD BAR

D5488-1

or

or
Chapter 7: Adjusting Autopilot Settings  

**Pop-up pilot time-out**

During normal autopilot operation, you can set the control unit so it has a data page as the main display (see page 31). Whenever you select a new autopilot mode or make a course change, the autopilot mode screen will "pop-up". After a short period, the display will revert to the selected data page. The default pop-up time is 5 seconds. You can use this Display Calibration screen to adjust the pop-up pilot display time-out.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>POPUP TIMEOUT</td>
<td>1 seconds to 10 seconds; Default = 5 seconds</td>
</tr>
</tbody>
</table>

**Data pages 1-15**

The next 15 screens allow you to modify the settings for the data pages. These define the SeaTalk/NMEA data pages that will be available during normal operation (see page 31). Each data page setup screen initially shows the title DATA PAGE and the page number. After 1 second, the text changes to the title of the data currently set for that page.

The default settings are:

<table>
<thead>
<tr>
<th>Data page</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XTE (Cross Track Error)</td>
</tr>
<tr>
<td>2</td>
<td>BTW* (Bearing to Waypoint)</td>
</tr>
<tr>
<td>3</td>
<td>DTW* (Distance to Waypoint)</td>
</tr>
<tr>
<td>4</td>
<td>RESPONSE</td>
</tr>
<tr>
<td>5-15</td>
<td>NOT USED (These pages are not displayed when you scroll through the data pages during normal operation)</td>
</tr>
</tbody>
</table>

*Note: It is good practice to keep the BTW and DTW pages for display. If the autopilot receives a man overboard (MOB) message, these data pages will show the bearing and distance to the MOB location.

To change the data displayed on a data page:

- Press **disp** to move to the appropriate data page setup screen.
- Use the -1 and +1 keys to scroll forwards or backwards through the available data pages (see following table).
- Then press **disp** to move to the next data page you want to change, or press and hold **standby** for 2 seconds to save changes.
### Available data pages

<table>
<thead>
<tr>
<th></th>
<th>Displayed as</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed Knots</td>
<td>SPEED KTS</td>
</tr>
<tr>
<td>Log</td>
<td>LOG XXXX.X</td>
</tr>
<tr>
<td>Trip</td>
<td>TRIP XXX.X</td>
</tr>
<tr>
<td>Average Speed, Knots</td>
<td>AV. SPD KTS</td>
</tr>
<tr>
<td>Wind Direction</td>
<td>e.g. WIND PORT</td>
</tr>
<tr>
<td>Wind Speed</td>
<td>WIND KTS</td>
</tr>
<tr>
<td>Depth Metres*</td>
<td>DEPTH M</td>
</tr>
<tr>
<td>Depth Feet*</td>
<td>DEPTH FT</td>
</tr>
<tr>
<td>Depth Fathoms*</td>
<td>DEPTH FA</td>
</tr>
<tr>
<td>Heading</td>
<td>HEADING</td>
</tr>
<tr>
<td>Water Temperature, Degrees C*</td>
<td>WATER °C</td>
</tr>
<tr>
<td>Water Temperature, Degrees F*</td>
<td>WATER °F</td>
</tr>
<tr>
<td>Course Over Ground</td>
<td>COG</td>
</tr>
<tr>
<td>Speed Over Ground, Knots</td>
<td>SOG KTS</td>
</tr>
<tr>
<td>Cross Track Error</td>
<td>XTE</td>
</tr>
<tr>
<td>Distance to Waypoint</td>
<td>DTW</td>
</tr>
<tr>
<td>Bearing to Waypoint</td>
<td>BTW</td>
</tr>
<tr>
<td>Rudder Gain</td>
<td>RUDD GAIN</td>
</tr>
<tr>
<td>Response</td>
<td>RESPONSE</td>
</tr>
<tr>
<td>Watch</td>
<td>WATCH - used to control the Watch timer (see page 32)</td>
</tr>
<tr>
<td>Universal Time Coordinated</td>
<td>UTC</td>
</tr>
<tr>
<td>Remote Control for Standard ST60/80 Instruments</td>
<td>INST REM</td>
</tr>
<tr>
<td>Remote Control for Maxiview Instruments</td>
<td>MAXI REM</td>
</tr>
<tr>
<td>NOT USED</td>
<td>Page not displayed (Any data page set to NOT USED is not displayed when you scroll through the data pages during normal operation)</td>
</tr>
</tbody>
</table>

*NOTE: There are 3 depth pages (meters, feet and fathoms) and 2 water temperature pages (°C and °F). The ST7001+ will display the water temperature or depth data in the units defined by data page you select.*
Using data pages to set up ST60 and ST80 remote control

Where the ST7001+ is used in conjunction with ST60 or ST80 instrumentation, you can use the ST7001+ to control the ST60 or ST80 instruments by duplicating the functions of the Remote Keypads used by these instruments. This means you can operate your autopilot and ST60/ST80 instruments from the same location.

By using the INST REM and MAXI REM data pages, you can use ST7001+ as a remote keypad to control any ST60 or ST80 instruments connected to it:

- the INST REM data page can control a standard (110 mm) ST60/ST80 instrument group
- the MAXI REM data page can control an ST80 Maxiview instrument group

Each ST7001+ can control one group of up to eight standard instruments and another group of up to eight Maxiview instruments.

Before you can use an ST7001+ to remotely control other instruments, you must define the instrument grouping and then allocate the ST7001+ to the required group.

Instrument grouping

Grouping allows you to create up to eight standard instrument and eight Maxiview instrument groups:

- each group can have up to eight instruments
- each group must have one or more remote keypads or an ST7001+ grouped to it
- each ST7001+ can be grouped with one ST80 Maxiview group and one ST80/ST60 standard instrument group
- each instrument in a group has a unique alphanumeric identity (e.g. A1, where A defines the group and 1 the instrument sequence number within the group):
  - standard ST60 or ST80 instruments are assigned group letters from A to H
  - maxiview instruments are assigned group letters from J to Q
  - ungrouped instruments have a dash (-) in place of a group letter
- The instrument sequence number range is from 1 to 8.
When you set up ST60 and ST80 instrument groups you will need to use the following ST7001+ keys.

**Standard instruments**

Press to select the required standard instrument. Press for 4 sec to enter Group Setup mode.

Toggle to select either:
- group letter
- sequence number

Press to set the identification you want:
- A to H for group identity
- 1 to 8 for instrument sequence, within group

**Maxiview instruments**

Press to select the required Maxiview instrument. Press for 4 sec to enter Group Setup mode.

Toggle to select either:
- group letter
- sequence number

Press to set the identification you want:
- A to H for group identity
- 1 to 8 for instrument sequence, within group
Chapter 7: Adjusting Autopilot Settings

Setting up an instrument group

1. At the ST7001+:
   - select the INST REM data page to group standard instruments
   - select the MAXI REM data page to group Maxiview instruments

2. At the ST7001+, use the arrow keys to select an instrument.

Note: The currently-selected instrument is indicated as follows:
- on ST80 instruments (including Maxiview), the characters are displayed as white characters on a black background (instead of the standard black on white)
- on ST60 digital instruments, you will see a REMOTE message
- on ST60 analogue instruments, you will see the TRUE/MAG and/or TRUE/APP message flashing

3. Press both the up and down arrow keys on the ST7001+ for 4 seconds, to put the instruments and the ST7001+ into Group Setup mode.
   When you enter Group Setup mode:
   - one instrument will be selected with a flashing cursor (and inverse characters on ST80 instruments, including Maxiview)
   - the ST7001+ screen text will alternate between:
     - INST REM and DSP SETUP for standard instruments
     - MAXI REM and DSP SETUP for Maxiview instruments

4. At the ST7001+, use the up or down arrow key to select an instrument to be the first in the group, i.e. so the required instrument shows it has been selected (as described above).

5. Use the ST7001+ to allocate a group letter and sequence number to the selected instrument. To do this:
   - Standard instruments: use the track key to toggle between group letter and sequence number, and the set crs key to set the identifying character.
Adjusting Autopilot Settings

Maxiview instruments: use the **resp** key to toggle between group letter and sequence number, and the **track** key to set the identifying character.

When you have identified the instrument, it should display its group letter and sequence number, e.g. A2.

**Note:** You can select all instruments in Group Setup mode.

6. Press either the up arrow or down arrow key to select another instrument and repeat the procedure in step 5.
7. Repeat steps 5 and 6 until all you have identified all instruments in the group.

**Note:** If you have more than eight ST60 or ST80 instruments, you must create a second group with a separate identification code (for example B1, B2 etc.), operated by another remote keypad.

8. Use the arrow keys to select an instrument in the group to which you want to allocate the ST7001+ as a keypad.

9. Press the up and down arrow keys together for 1 second. The ST7001+ screen text will alternate between:
   - **INST REM** and **KPD SETUP** for standard instruments
   - **MAXI REM** and **KPD SETUP** for Maxiview instruments

   Each instruments in the selected group will display **PRESS KEY**.

10. To allocate the ST7001+ to the selected group of instruments:
   - press the **track** or **set crs** key for standard instruments
   - press the **resp** or **track** key for Maxiview instruments

11. If you are creating more than one group, repeat steps 3 to 10 for each group.

12. When you have set up all instrument groups, return to normal operation as follows:
   - standard instruments:
     - press the **track** and **set crs** keys for 1 second to return to Group Setup mode
     - then press the **track** and **set crs** keys again for 2 seconds to return to normal operation
   - Maxiview instruments:
     - press the **resp** and **track** keys for 1 second, to return to Group Setup mode
     - press the **resp** and **track** keys again for 2 seconds to return to normal operation.
7.3 User Calibration

Note: If you are connecting the ST7001+ to a non-150/400 autopilot system, the User Calibration group is not available. Refer to the Appendix for full details.

The User Calibration group includes settings that you may need to adjust on a regular basis due to changing conditions.

User Calibration screens

AutoTack angle

Note: Only available if vessel type = SAIL BOAT.

The AutoTack angle is the angle through which the boat will turn when you select an automatic tack (see page 12).

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO TACK</td>
<td>40° to 125° in 1° steps</td>
</tr>
</tbody>
</table>

Gybe inhibit

Note: Only available if vessel type = SAIL BOAT.

With gybe inhibit on:

• you will be able to perform an AutoTack into the wind
• to prevent accidental gybes, the autopilot will prevent the boat from performing an AutoTack away from the wind

With gybe inhibit off, you can perform an AutoTack into or away from the wind.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Options</th>
</tr>
</thead>
</table>
| GYBE STOP   | On = Gybe inhibit on (gybes prevented)  
OFF = Gybe inhibit off (gybes permitted)  
Default = On |
Accessing User Calibration

STANDBY mode

2 seconds (saves changes)

Calibration Mode

DEALER CAL

1 second

USER CAL

1 second

User Calibration

AUTO TACK

100°

Sailboats only

VARIATION

1

Sailboats only

RESPONSE

5

Sailboats only

GYBE STOP

On

Sailboats only

WIND TRIM

5

Sailboats only

To adjust values use

1 or -1

To exit & save changes

2 seconds

STANDBY

88 ST7001+ Autopilot Control Unit - Owner’s Handbook

Adjusting Autopilot Settings
**Wind selection**

*Note: Only available if vessel type = SAIL BOAT and appropriate wind data is available.*

This screen determines whether the boat steers to apparent or true wind in Wind Vane mode.

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
</table>
| WIND APP | Autopilot steers to **apparent** wind angle (default):  
• the autopilot will maintain the apparent wind angle |
| WIND TRUE | Autopilot steers to **true** wind angle:  
• the autopilot will maintain the true wind angle |

**WindTrim (wind response)**

*Note: Only available if vessel type = SAIL BOAT.*

WindTrim (wind response) controls how quickly the autopilot responds to changes in the wind direction. Higher wind trim settings will result in a pilot that is more responsive to wind changes.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Options</th>
</tr>
</thead>
</table>
| WIND TRIM   | Range = 1 to 9  
Lower values (1 to 3) = autopilot responds to longer term wind changes (less pilot activity)  
Typical values = 4 to 6  
Higher values (7 to 9) = autopilot responds to shorter term wind changes (more pilot activity) |

**Response level**

This is the default autopilot response level. The response level controls the relationship between course keeping accuracy and the amount of helm/drive activity. You can make temporary changes to response during normal operation (see page 7).
**Type 150G/400G autopilot systems**

Type 150G/400G autopilot systems have 9 possible response levels.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESPONSE</td>
<td>1 to 9</td>
</tr>
<tr>
<td></td>
<td>• level 1 gives the least pilot activity to conserve power, but may compromise short-term course-keeping accuracy</td>
</tr>
<tr>
<td></td>
<td>• levels 4 to 6 should give good course keeping with crisp, well controlled turns under normal operating conditions</td>
</tr>
<tr>
<td></td>
<td>• level 9 gives the tightest course keeping and greatest rudder activity, but may lead to a rough passage in open waters as the autopilot may ‘fight’ the sea</td>
</tr>
</tbody>
</table>

**Type 150/400 autopilot systems**

Type 150/400 (non-GyroPlus) autopilot systems have 3 possible response levels:

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESPONSE 1</td>
<td>AutoSeastate on (Automatic deadband)</td>
</tr>
<tr>
<td></td>
<td>• autopilot to gradually ignores repetitive boat movements and only react to true variations in course</td>
</tr>
<tr>
<td></td>
<td>• provides the best compromise between power consumption and course keeping accuracy</td>
</tr>
<tr>
<td>RESPONSE 2</td>
<td>AutoSeastate off (minimum deadband)</td>
</tr>
<tr>
<td></td>
<td>• provides tighter course keeping</td>
</tr>
<tr>
<td></td>
<td>• increased power consumption and drive unit activity</td>
</tr>
<tr>
<td>RESPONSE 3</td>
<td>AutoSeastate off + counter rudder yaw damping</td>
</tr>
<tr>
<td></td>
<td>• provides tightest possible course keeping by introducing counter rudder yaw damping</td>
</tr>
</tbody>
</table>

**Magnetic variation**

If required, set this value to the level of magnetic variation present at your boat’s current position – indicated as east (VAR EAST) or west (VAR WEST). The autopilot sends this variation setting to other instruments on the SeaTalk system, and it can be updated by other SeaTalk instruments.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIATION</td>
<td>Default setting = 0°</td>
</tr>
<tr>
<td>VAR EAST/ VAR WEST</td>
<td>30°EAST(-30°) to 30° WEST (+30°) in 1° steps</td>
</tr>
</tbody>
</table>
7.4 Seatrial Calibration

The Seatrial Calibration group has been designed specifically for use during the initial seatrial when commissioning your autopilot. Refer to Chapter 6: Commissioning the Autopilot for full details.

**CAUTION:**
You should not need to access Seatrial Calibration to adjust settings during normal autopilot operation.

**Note:** If you are connecting the ST7001+ to a non-150/400 autopilot system, the Seatrial Calibration group is not available. You will need to use the Compass Calibration group instead. Refer to the Appendix for full details.
7.5 Dealer Calibration

The Dealer Calibration group includes items that have a significant impact on autopilot operation and can affect your boat’s safety.

CAUTION:
After you have commissioned the autopilot, you should not normally need to alter the Dealer Calibration values.

Note: If you are connecting the ST7001+ to a non-150/400 autopilot system, the items in the Dealer Calibration group appear in a different order and several items will not be available. Refer to the Appendix for full details.

Accessing Dealer Calibration

To prevent accidental access, we have made entry to Dealer Calibration more difficult than the other groups:

- when you see the DEALER CAL screen, press the auto key
- the display will show CAL
- press the -1 and +1 keys together to enter Dealer Calibration

Dealer Calibration screens and settings

The items in Dealer Calibration vary according to the vessel type you have selected. See the table on page 92 for default values.

SeaTrial Calibration lock

This screen controls whether it is possible to access Seatrial Calibration.

Note: On non-150/400 systems, the calibration lock controls whether it is possible to enter Compass Calibration. See the Appendix for full details.

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL LOCK OFF</td>
<td>Calibration lock off – Seatrial calibration can be accessed (default)</td>
</tr>
<tr>
<td>CAL LOCK ON</td>
<td>Calibration lock on – Seatrial calibration cannot be accessed</td>
</tr>
</tbody>
</table>
Chapter 7: Adjusting Autopilot Settings

Accessing Dealer Calibration

STANDBY mode

2 seconds (saves changes)

Calibration Mode

DEALER CAL

USER CAL

1 second

Calibration Lock

OFF

To adjust values use

-1 or +1

-10 or +10

To save changes

2 seconds

Dealer Calibration

RESET VARIATION LATITUDE AUTOADAPT CRUISE SP WIND TRIM WIND APP GYBE STOP AUTO TACK RELEASE

Sail boats only Stern drives only

VESSSEL DRIVE TYP ALIGN LIMIT RUD GAIN COUNT RUD RUD DAMP AUTO TRIM RESPONSE TURN RATE

Sail boats only Not sail boats

1 second
### Vessel type

Vessel type should be set when commissioning the autopilot (see page 59).

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLACE</td>
<td>Displacement powerboat</td>
</tr>
<tr>
<td>SEMI DISPLACE</td>
<td>Semi-displacement powerboat</td>
</tr>
<tr>
<td>PLANING</td>
<td>Planing powerboat</td>
</tr>
<tr>
<td>STERN DRV</td>
<td>Planing powerboat with I/O drive (stern drive)</td>
</tr>
<tr>
<td>WORK BOAT</td>
<td>Work boat (150/150G and 400/400G only)</td>
</tr>
<tr>
<td>SAIL BOAT</td>
<td>Sail boat (150/150G and 400/400G only)</td>
</tr>
</tbody>
</table>

**Note:** When you select the vessel type, the autopilot will set appropriate defaults for several other calibration settings. Refer to the table on page 101 for default values.

### Drive type

The drive type setting controls how the autopilot drives the steering system. The drive type should be set when commissioning the autopilot (see page 61).

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRIVE TYP 3</td>
<td>Linear drive, rotary drive or I/O (stern) drive</td>
</tr>
<tr>
<td>DRIVE TYP 4</td>
<td>Hydraulic pump or hydraulic linear drive</td>
</tr>
<tr>
<td>DRIVE TYP 5</td>
<td>Constant running hydraulic pump solenoids</td>
</tr>
</tbody>
</table>

### Align rudder

Use the screen to center the rudder bar display after installing the autopilot system (see page 61). This screen also appears in the Seatral Calibration grouping.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIGN RUDDER</td>
<td>-7° to +7° in 1° steps</td>
</tr>
</tbody>
</table>
**Rudder limit**

Use the rudder limit screen to set the limits of autopilot rudder control just inside the mechanical end stops. This will avoid putting the steering system under unnecessary load. You should adjust this setting when commissioning the autopilot (see *page 61*).

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUDDER LIMIT</td>
<td>10° to 40° in 1° steps</td>
</tr>
</tbody>
</table>

**Rudder gain**

This screen determines the default rudder gain setting. Rudder gain is a measure of how much helm the autopilot will apply to correct course errors. The higher the setting the more rudder will be applied.

The default rudder gain is set during the initial seatrial:

- Type 150G/400G autopilots will adjust the rudder gain automatically during the AutoLearn (see *page 68*).
- Type 150/400 and Type 100/300 autopilots will require manual adjustment of rudder gain (see *page 71*).

You can make temporary changes to this rudder gain value during normal operation (see *page 29*).

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUDD GAIN</td>
<td>1 to 9</td>
</tr>
</tbody>
</table>

**Counter rudder**

Counter rudder is the amount of rudder the autopilot applies to try to prevent the boat from yawing off course. Higher counter rudder settings result in more rudder being applied.

The default rudder gain is set during the initial seatrial:

- Type 150G/400G autopilots will adjust the counter rudder setting automatically during the AutoLearn (see *page 68*).
- Type 150/400 and Type 100/300 autopilots will require manual adjustment of counter rudder (see *page 71*).

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT RUD</td>
<td>1 to 9</td>
</tr>
</tbody>
</table>
Rudder damping

Adjust the rudder damping value if the autopilot ‘hunts’ when trying to position the rudder (see page 62). Increasing the rudder damping value reduces hunting.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUDD DAMP</td>
<td>1 to 9</td>
</tr>
</tbody>
</table>

AutoTrim

The AutoTrim setting determines the rate at which the autopilot applies ‘standing helm’ to correct for trim changes caused by varying wind loads on the sails or superstructure.

The default AutoTrim is set when commissioning the autopilot:

- Type 150G/400G autopilots will adjust the AutoTrim setting automatically during the AutoLearn (see page 68)
- Type 150/400 and Type 100/300 autopilots will require manual adjustment of AutoTrim (see page 71) after the initial sea trial

If you need to change the setting, increase the AutoTrim one level at a time and use the lowest acceptable value:

- decrease the AutoTrim level if the autopilot gives unstable course keeping or excessive drive activity with a change in the heel angle
- increase the AutoTrim level if the autopilot reacts slowly to a heading change due to a change in the heel angle
- if the AutoTrim level is too high, the boat will be less stable and snake around the desired course

Note: Type 150G/400G autopilots have a ‘FastTrim’ feature within AutoTrim. Select AUTO TRIM OFF to turn off FastTrim as well as AutoTrim.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO TRIM OFF</td>
<td>No trim correction</td>
</tr>
<tr>
<td>AUTO TRIM 1</td>
<td>Slow trim correction</td>
</tr>
<tr>
<td>AUTO TRIM 2</td>
<td>Medium trim correction</td>
</tr>
<tr>
<td>AUTO TRIM 3</td>
<td>Rapid trim correction</td>
</tr>
<tr>
<td>AUTO TRIM 4</td>
<td>Very rapid trim correction</td>
</tr>
</tbody>
</table>
Chapter 7: Adjusting Autopilot Settings

Response level
This screen determines the default response setting. This screen also appears in User Calibration – see page 89 for full details (or refer to the Appendix for Type 100/300 autopilots).

Turn rate limit
Note: Not available if vessel type = SAIL BOAT.
This limits your boat’s rate of turn under autopilot control.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURN RATE</td>
<td>1° to 30° per second in 1° steps</td>
</tr>
</tbody>
</table>

Off course warning angle
This screen determines the angle used by the OFF COURSE warning (see page 10). The OFF COURSE warning operates if the pilot strays off course by more than the specified angle for more than 20 seconds.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF COURSE</td>
<td>15° to 40° in 1° steps</td>
</tr>
</tbody>
</table>

AutoRelease (I/O drives only)
Note: Only available if vessel type = STERNDRV.
If the vessel type is set to STERN DRV (I/O or stern drive), you will see the AutoRelease screen (AUTO RELEASE) set to ON as a default.
AutoRelease provides emergency manual over-ride in situations when you need to avoid an obstacle at the last moment.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO RELEASE</td>
<td>ON = AutoRelease on</td>
</tr>
<tr>
<td></td>
<td>OFF = AutoRelease off</td>
</tr>
</tbody>
</table>

**AutoTack angle**

*Note: Only available if vessel type = SAIL BOAT (Type 150/150G or Type 400/400G) or DISPLACEMENT (Type 100/300).*

This screen also appears in User Calibration – see page 87 for full details (or refer to the Appendix for Type 100/300 autopilots).

**Gybe inhibit**

*Notes:*
1. *Only available if vessel type = SAIL BOAT.*
2. *Not available on Type 100/300 autopilot systems.*

With gybe inhibit on you can only AutoTack into the wind. This screen also appears in User Calibration – see page 87 for full details.

**Wind type**

*Notes:*
1. *Only available if vessel type = SAIL BOAT.*
2. *Not available on Type 100/300 autopilot systems.*

This screen determines whether the boat steers to apparent or true wind in Wind Vane mode. This screen also appears in User Calibration – see page 89 for full details.

**WindTrim (wind response)**

*Note: Only available if vessel type = SAIL BOAT (Type 150/150G or Type 400/400G) or DISPLACEMENT (Type 100/300).*

WindTrim (wind response) controls how quickly the autopilot responds to changes in the wind direction. This screen also appears in User Calibration – see page 89 for full details (or refer to the Appendix for Type 100/300 autopilots).
Chapter 7: Adjusting Autopilot Settings

Cruise speed

Set the cruise speed to the boat’s typical cruising speed. If both the boat’s speed through the water and speed over ground are unavailable via SeaTalk or NMEA, the autopilot will use this default cruise speed when computing course changes.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRUISE SP</td>
<td>4 to 60 knots</td>
</tr>
</tbody>
</table>

AutoAdapt

The AutoAdapt feature allows the autopilot to compensate for heading errors at higher latitudes, which are caused by the increasing dip of the earth’s magnetic field. The increased dip has the effect of amplifying rudder response on northerly headings in the northern hemisphere, and on southerly headings in the southern hemisphere.

**Note:** If you set AUTOADAPT to nth or Sth, you then need to enter your current latitude in the next screen (LATITUDE), so that the autopilot can provide accurate course keeping by automatically adjusting the rudder gain depending on the heading. If you have a GPS connected, the autopilot will take latitude information from the GPS.

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOADAPT OFF</td>
<td>AutoAdapt off</td>
</tr>
<tr>
<td>AUTOADAPT nth</td>
<td>AutoAdapt compensation on – Northern hemisphere</td>
</tr>
<tr>
<td>AUTOADAPT Sth</td>
<td>AutoAdapt compensation on – Southern hemisphere</td>
</tr>
</tbody>
</table>
**Latitude**

The ST7001+ only displays this screen if you have set AutoAdapt to nth or Sth. Use the \(-1\), \(+1\), \(-10\) and \(+10\) keys to set the value to your boat’s current latitude, to the nearest degree.

**Note:** If valid latitude data is available via SeaTalk or NMEA, the ST7001+ will use this data instead of the calibration value.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATITUDE</td>
<td>0° to 80° in 1° steps</td>
</tr>
</tbody>
</table>

**Magnetic variation**

This is the degree of magnetic variation. This screen also appears in User Calibration – see page 90 for full details.

**Autopilot reset**

**Note:** Not available on Type 100/300 autopilot systems.

**WARNING:**

Do NOT use this feature unless advised to do so by a Raymarine dealer. If you complete a reset you will lose ALL autopilot calibration settings. You will then need to repeat the autopilot commissioning process.

Selecting an autopilot reset will reset all of the autopilot calibration values in the course computer:

- all of the settings in User Calibration, Seatrial Calibration and Dealer Calibration will return to the factory default values
- the settings in Display Calibration will not change, as these are stored in each individual control head

To reset the autopilot:

1. Select the Autopilot reset (RESET) screen in Dealer Calibration.
2. Press the \(+1\) key.
3. The screen will then show an ARE YOU SURE message:
   - press the \(+1\) key again to select ‘YES’ and reset the autopilot
   - alternatively, press the disp key to cancel
4. You will then see the CAL LOCK screen:
   - press standby for 2 seconds to save the new default settings, then turn the course computer power off and back on
# Dealer Calibration defaults: Types 150/150G & 400/400G

<table>
<thead>
<tr>
<th>Calibration setting</th>
<th>Vessel type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factory default</td>
</tr>
<tr>
<td>Calibration lock</td>
<td>OFF</td>
</tr>
<tr>
<td>Vessel type</td>
<td>0</td>
</tr>
<tr>
<td>Drive type</td>
<td>3</td>
</tr>
<tr>
<td>Rudder alignment</td>
<td>0</td>
</tr>
<tr>
<td>Rudder limit</td>
<td>30</td>
</tr>
<tr>
<td>Rudder gain</td>
<td>4</td>
</tr>
<tr>
<td>Counter rudder</td>
<td>4</td>
</tr>
<tr>
<td>Rudder damping</td>
<td>2</td>
</tr>
<tr>
<td>AutoTrim</td>
<td>2</td>
</tr>
<tr>
<td>Response: with G non-G</td>
<td>5</td>
</tr>
<tr>
<td>Turn rate limit</td>
<td>5</td>
</tr>
<tr>
<td>Off course angle</td>
<td>20</td>
</tr>
<tr>
<td>AutoRelease</td>
<td>OFF</td>
</tr>
<tr>
<td>AutoTack angle</td>
<td>100</td>
</tr>
<tr>
<td>Gybe inhibit</td>
<td>ON</td>
</tr>
<tr>
<td>Wind type</td>
<td>APP</td>
</tr>
<tr>
<td>Wind Trim</td>
<td>5</td>
</tr>
<tr>
<td>Cruise speed</td>
<td>8</td>
</tr>
<tr>
<td>AutoAdapt</td>
<td>nth</td>
</tr>
<tr>
<td>Latitude</td>
<td>0</td>
</tr>
<tr>
<td>Variation</td>
<td>0</td>
</tr>
<tr>
<td>Autopilot reset</td>
<td>OFF</td>
</tr>
</tbody>
</table>
**Dealer Calibration options: Types 150/150G & 400/400G**

<table>
<thead>
<tr>
<th>Calibration setting</th>
<th>Vessel type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration lock</td>
<td>OFF, ON</td>
</tr>
<tr>
<td>Vessel type</td>
<td>DISPLACE, SEMI DISPLACE, PLANING, STERN DRV, WORK BOAT, SAIL BOAT</td>
</tr>
<tr>
<td>Drive type</td>
<td>3, 4, 5</td>
</tr>
<tr>
<td>Rudder alignment</td>
<td>-7 to +7</td>
</tr>
<tr>
<td>Rudder limit</td>
<td>10 to 40</td>
</tr>
<tr>
<td>Rudder gain</td>
<td>1 to 9</td>
</tr>
<tr>
<td>Counter rudder</td>
<td>1 to 9</td>
</tr>
<tr>
<td>Rudder damping</td>
<td>1 to 9</td>
</tr>
<tr>
<td>AutoTrim</td>
<td>0 to 4</td>
</tr>
<tr>
<td>Response</td>
<td>1 to 9 (Type 150G/400G)</td>
</tr>
<tr>
<td></td>
<td>1 to 3 (Type 150/400)</td>
</tr>
<tr>
<td>Turn rate limit</td>
<td>1 to 30</td>
</tr>
<tr>
<td>Off course angle</td>
<td>15 to 40</td>
</tr>
<tr>
<td>AutoRelease</td>
<td>OFF, ON</td>
</tr>
<tr>
<td>AutoTack angle</td>
<td>40 to 125</td>
</tr>
<tr>
<td>Gybe inhibit</td>
<td>OFF, ON</td>
</tr>
<tr>
<td>Wind type</td>
<td>APPARENT, TRUE</td>
</tr>
<tr>
<td>Wind Trim</td>
<td>1 to 9</td>
</tr>
<tr>
<td>Cruise speed</td>
<td>4 to 60</td>
</tr>
<tr>
<td>AutoAdapt</td>
<td>OFF, nth, 5th</td>
</tr>
<tr>
<td>Latitude</td>
<td>0 to 80</td>
</tr>
<tr>
<td>Variation</td>
<td>-30 to +30</td>
</tr>
<tr>
<td>Autopilot reset</td>
<td>OFF, ON</td>
</tr>
</tbody>
</table>
Appendix: Using the ST7001+ With Non-150/400 Autopilots

Introduction
The information in this Appendix explains the key differences when using, commissioning and calibrating the autopilot if you have connected the ST7001+ to a Raymarine autopilot other than a Type 150/150G or Type 400/400G.

Type 100/300 autopilots
The ST7001+ is compatible with Raymarine Type 100/300 course computers. When used with a Type 100/300 course computer, the control unit provides:
- standard functionality using the Raymarine steering algorithm without AST (Advanced Steering Technology)
- improved calibration access, but without the AutoLearn calibration feature

Other autopilot systems
You can also use the ST7001+ as an additional control unit for any SeaTalk autopilot system (e.g., ST4000+, ST5000+ or SportPilot) allowing autopilot control from a secondary location.

<table>
<thead>
<tr>
<th>Using the autopilot (non-150/400 systems)</th>
<th>page 104</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section explains the key differences when using the ST7001+ to control a non-150/400 autopilot.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commissioning the autopilot (non-150/400 systems)</th>
<th>page 105</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section explains how to commission your autopilot after installation. Commissioning consists of a series of dockside checks followed by a seatrial.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibration mode (non-150/400 systems)</th>
<th>page 106</th>
</tr>
</thead>
<tbody>
<tr>
<td>This section explains the Calibration mode when the ST7001+ is used with a non-150/400 autopilot.</td>
<td></td>
</tr>
</tbody>
</table>
Using the autopilot (non-150/400 systems)

The operating procedures when using the ST7001+ control unit with a non-150/400 autopilot are basically the same as the procedures for using a 150/400 system without a GyroPlus.

Follow the instructions in Chapter 2: Basic Operation and Chapter 3: Advanced Operation, bearing in mind these main differences:

Adjusting autopilot performance

You can select three response levels to adjust autopilot performance:

- **Response Level 1: AutoSeastate on (Automatic deadband)**
  This setting causes the autopilot to gradually ignore repetitive boat movements and only react to true variations in course. This provides the best balance between power consumption and course keeping accuracy, and is the default calibration setting.

- **Response Level 2: AutoSeastate off (Minimum deadband)**
  This setting provides tighter course keeping. However, this results in increased power consumption and drive unit activity.

- **Response Level 3: AutoSeastate off + yaw damping**
  This setting provides the tightest possible course keeping by introducing counter rudder yaw damping. Yaw damping will use the information provided by a GyroPlus, if connected.

Wind Vane mode

When using Wind Vane mode:

- you can only use the autopilot to maintain an *apparent* wind angle (not a true wind angle)
- gybe inhibit is permanently switched on
- WindTrim provides two settings: 1 = normal; 2 = faster response

Manual (Joystick) mode

If you connect the ST7001+ to a Type 100/300 course computer system fitted with a joystick, you will enter Manual (joystick) mode when you press the joystick button.

In Manual (joystick) mode you can use the joystick to power steer the rudder. The ST7001+ will return to Standby mode if you release the joystick button or if you press the **standby** key on the control unit. You can set the autopilot to power steer in either proportional or bang-bang mode (see page 110).
Commissioning the autopilot (non-150/400 systems)

Using the ST7001+ to commission a non-150/400 autopilot is basically the same as the commissioning a 150/400 system without a GyroPlus. It involves a series of dockside checks, then a seatrial to calibrate the compass and manually adjust the autopilot’s settings.

Follow the instructions in Chapter 6: Commissioning the Autopilot bearing in mind these main points:

Dockside Checks

With the boat safely tied up, complete the dockside checks described on page 56 to page 57 of Chapter 6: Commissioning the Autopilot:

1. Switch on.
2. Check the autopilot operating sense.
3. Adjust the basic autopilot settings.
4. Check the SeaTalk and NMEA connections.

When adjusting the basic autopilot settings you will need to enter Display Calibration, as shown on the illustration on page 107. When setting the vessel type you will have the following options:

- Displacement: DISPLACE (including sail boats)
- Semi Displacement: SEMI DISPLACE
- Planing: PLANING
- Stern (I/O) Drive: STERN DRV

Seatrial Calibration

When you have completed the dockside checks, you must complete the setup by taking the boat on a short seatrial to:

1. Calibrate the compass: complete the automatic deviation correction and heading alignment as described in Chapter 6: Commissioning the Autopilot.

   NOTE: You will need to enter COMPASS CALIBRATION (not Seatrial Calibration) to swing the compass on a Type 100/300 course computer systems. For more details about accessing and using the Compass Calibration grouping, see the next page.

2. Manually adjust the autopilot settings to suit your boat, as described in Chapter 6: Commissioning the Autopilot.
Calibration mode (non-150/400 systems)

Calibration groups

When connected to an autopilot other than a Type 150/150G or 400/400G, the Calibration mode provides 3 main calibration groups:

**Display Calibration** (DISPLAY CAL)

The items in Display Calibration only affect the individual control unit. They are stored in the control unit and do not affect any other control units connected through SeaTalk.

You can adjust the Display Calibration settings as often as necessary – for example, to add or change information displayed on data pages.

**Compass Calibration** (COMPASS CAL)

The Compass Calibration group is specifically designed for use during the initial autopilot seatrial, so you can correct the compass deviation and then align the compass.

**Dealer Calibration** (DEALER CAL)

The Dealer Calibration group includes items that have a significant impact on autopilot operation and can affect your boat’s safety.

After you have completed the initial installation and seatrial, you should not normally need to alter the Dealer Calibration values. The items in Dealer Calibration vary according to the Vessel Type you have selected.
Calibration Mode Overview
100/300 Autopilot Systems

Within DISPLAY CAL, COMPASS CAL and DEALER CAL:
- press disp or \( \uparrow \) to move forwards through items
- use \(-1, +1, -10, +10\) to adjust settings
- press standby for 2 seconds to save changes

Standby mode

Vessel type
Calibration lock
Rudder gain
Counter rudder
Align rudder
Rudder limit
Turn rate limit
Cruise speed
Off course alarm angle
AutoTrim
Power steer on/off
Drive type
Rudder damping
Magnetic variation
AutoAdapt
Latitude
WindTrim (Displacement only)
Auto tack (Displacement only)
AutoRelease (Sterndrive only)
Response level

Display bar selection
Heading type
Pop-up pilot time-out
Data pages 1 to 15
Dealer Calibration screens

The illustration shows the screens that appear in the calibration groups when the ST7001+ is connected to a Type 100/300 course computer.

Vessel type

Vessel type should be set when commissioning the autopilot (see page 59).

<table>
<thead>
<tr>
<th>Options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLACE</td>
<td>Displacement</td>
</tr>
<tr>
<td>SEMI DISPLACE</td>
<td>Semi-displacement</td>
</tr>
<tr>
<td>PLANING</td>
<td>Planing</td>
</tr>
<tr>
<td>STERN DRV</td>
<td>Boat with I/O drive (stern drive)</td>
</tr>
</tbody>
</table>

Note: When you select the vessel type, the autopilot will set appropriate defaults for several other calibration settings.

Compass Calibration lock

This screen controls whether it is possible to access Compass Calibration.

<table>
<thead>
<tr>
<th>Options</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CAL LOCK OFF</td>
<td>Lock off: Compass Calibration can be accessed</td>
</tr>
<tr>
<td>CAL LOCK ON</td>
<td>Lock on: Compass Calibration cannot be accessed</td>
</tr>
</tbody>
</table>

Rudder gain

This screen determines the default rudder gain setting. Rudder gain is a measure of how much helm the autopilot will apply to correct course errors. The higher the setting, the more rudder will be applied. You should adjust this setting when commissioning the autopilot. (see page 71). You can make temporary changes to this rudder gain value during normal operation (see page 29).

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUDD GAIN</td>
<td>1 to 9</td>
</tr>
</tbody>
</table>
**Counter rudder**
Counter rudder is the amount of rudder the autopilot applies to try to prevent the boat from yawing off course. Higher counter rudder settings result in more rudder being applied. You should set the default counter rudder when commissioning the autopilot (see page 72).

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>COUNT RUD</td>
<td>1 to 9</td>
</tr>
</tbody>
</table>

**Align rudder**
Use this screen to center the rudder bar display after installing the autopilot system.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALIGN RUDDER</td>
<td>-7° to +7° in 1° steps</td>
</tr>
</tbody>
</table>

**Rudder limit**
Use the rudder limit screen to set the limits of autopilot rudder control just inside the mechanical end stops. This will avoid putting the steering system under unnecessary load. You should adjust this when commissioning the autopilot (see page 61).

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUDDER LIMIT</td>
<td>15° to 30° in 1° steps</td>
</tr>
</tbody>
</table>

**Turn rate limit**
This limits your boat’s rate of turn under autopilot control.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>TURN RATE</td>
<td>5° to 20° per second in 1° steps</td>
</tr>
</tbody>
</table>

**Cruise speed**
Set the cruise speed to the boat’s typical cruising speed. If both the boat’s speed through the water and speed over ground are unavailable via SeaTalk or NMEA, the autopilot will use this default cruise speed when computing course changes.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRUISE SP</td>
<td>4 to 60 knots</td>
</tr>
</tbody>
</table>
Off course warning angle

This screen determines the angle used by the OFF COURSE warning (see page 10). The OFF COURSE warning operates if the pilot strays off course by more than the specified angle for more than 20 seconds.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFF COURSE</td>
<td>15° to 40° in 1° steps</td>
</tr>
</tbody>
</table>

AutoTrim

The AutoTrim setting determines the rate at which the autopilot applies ‘standing helm’ to correct for trim changes caused by varying wind loads on the sails or superstructure. You should set the default AutoTrim after commissioning the autopilot (see page 73).

<table>
<thead>
<tr>
<th>Setting</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO TRIM OFF</td>
<td>No trim correction</td>
</tr>
<tr>
<td>AUTO TRIM 1</td>
<td>Slow trim correction</td>
</tr>
<tr>
<td>AUTO TRIM 2</td>
<td>Medium trim correction</td>
</tr>
<tr>
<td>AUTO TRIM 3</td>
<td>Rapid trim correction (default)</td>
</tr>
<tr>
<td>AUTO TRIM 4</td>
<td>Very rapid trim correction</td>
</tr>
</tbody>
</table>

Power steer

If you have a joystick connected to your Type 100/300 autopilot system, use power steer to select the required joystick mode of operation (see table).

<table>
<thead>
<tr>
<th>Options</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWER STR OFF</td>
<td>Power steer off</td>
</tr>
</tbody>
</table>
| POWER STR 1   | 1 = Proportional power steer
Proportional power steer applies rudder in proportion to joystick movement – the further the joystick is held over, the greater the applied rudder. |
| POWER STR 2   | 2 = Bang-bang power steer
Bang-bang power steer applies continuous rudder in the direction of the lever movement – to improve control, the speed of rudder movement changes with the angle of the lever. For maximum speed, push the lever hard over. If you return the lever to the center position, the rudder will remain in its current position. |
Appendix: Using the ST7001+ With Non-150/400 Autopilots

**Drive type**

The drive type setting controls how the autopilot drives the steering system. You should set the drive type when commissioning the autopilot (see page 61).

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRIVE TYP 1 or 2</td>
<td>Not used</td>
</tr>
<tr>
<td>DRIVE TYP 3</td>
<td>Linear drive, rotary drive or I/O (stern) drive</td>
</tr>
<tr>
<td>DRIVE TYP 4</td>
<td>Hydraulic pump or hydraulic linear drive</td>
</tr>
<tr>
<td>DRIVE TYP 5</td>
<td>Constant running hydraulic pump solenoids</td>
</tr>
</tbody>
</table>

**Rudder damping**

Set this option during the initial dockside checks if the autopilot ‘hunts’ when trying to position the rudder (see page 62).

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>RUDD DAMP</td>
<td>1 to 9</td>
</tr>
</tbody>
</table>

**Magnetic variation**

If required, set this value to the level of magnetic variation present at your boat’s current position – indicated as east (VAR EAST) or west (VAR WEST). The autopilot sends this variation setting to other instruments on the SeaTalk system, and it can be updated by other SeaTalk instruments.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>VARIATION</td>
<td>Default setting = 0°</td>
</tr>
<tr>
<td>VAR EAST/ VAR WEST</td>
<td>30°EAST(-30°) to 30° WEST (+30°) in 1° steps</td>
</tr>
</tbody>
</table>

**AutoAdapt**

The AutoAdapt feature allows the autopilot to compensate for heading errors at higher latitudes, which are caused by the increasing dip of the earth’s magnetic field.

The increased dip has the effect of amplifying rudder response on northerly headings in the northern hemisphere, and on southerly headings in the southern hemisphere.
Note: If you set AUTOADAPT to nth or Sth, you then need to enter your current latitude in the next screen (LATITUDE), so that the autopilot can provide accurate course keeping by automatically adjusting the rudder gain depending on the heading.

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOADAPT OFF</td>
<td>AutoAdapt off</td>
</tr>
<tr>
<td>AUTOADAPT nth</td>
<td>AutoAdapt compensation on – Northern hemisphere</td>
</tr>
<tr>
<td>AUTOADAPT Sth</td>
<td>AutoAdapt compensation on – Southern hemisphere</td>
</tr>
</tbody>
</table>

**Latitude**

The ST7001+ only displays this screen if you have set AutoAdapt to nth or Sth. Use the -1, +1, -10 and +10 keys to set the value to your boat’s current latitude, to the nearest degree.

Note: If valid latitude data is available via SeaTalk or NMEA, the autopilot will use this data instead of the calibration value.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>LATITUDE</td>
<td>0° to 80° in 1° steps</td>
</tr>
</tbody>
</table>

**WindTrim (wind response)**

Note: Only available if vessel type = DISPLACEMENT.

WindTrim (wind response) controls how quickly the autopilot responds to changes in the wind direction.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIND TRIM</td>
<td>1 = Normal setting</td>
</tr>
<tr>
<td></td>
<td>2 = Faster response for wind shifts</td>
</tr>
</tbody>
</table>

**AutoTack angle**

Note: Only available if vessel type = DISPLACEMENT.

The AutoTack angle is the angle through which the boat will turn when you select an automatic tack (see page 12).

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO TACK</td>
<td>40° to 125° in 1° steps</td>
</tr>
</tbody>
</table>
AutoRelease (I/O drives only)

Note: Only available if vessel type = STERN DRV.

If the vessel type is set to STERN DRV (I/O or stern drive), you will see the AutoRelease screen (AUTO RELEASE) set to ON as a default. AutoRelease provides emergency manual over-ride in situations when you need to avoid an obstacle at the last moment.

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO RELEASE</td>
<td>ON = AutoRelease on</td>
</tr>
<tr>
<td></td>
<td>OFF = AutoRelease off</td>
</tr>
</tbody>
</table>

Response level

This is the default response setting. The response level controls the relationship between the autopilot’s course keeping accuracy and the amount of helm/drive activity. You can make temporary changes to response during normal operation (see page 7).

<table>
<thead>
<tr>
<th>Screen text</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESPONSE 1</td>
<td>AutoSeastate on (Automatic deadband) = default</td>
</tr>
<tr>
<td></td>
<td>• autopilot to gradually ignores repetitive boat movements</td>
</tr>
<tr>
<td></td>
<td>• only react to true variations in course</td>
</tr>
<tr>
<td></td>
<td>• provides the best compromise between power consumption and course</td>
</tr>
<tr>
<td></td>
<td>keeping accuracy</td>
</tr>
<tr>
<td>RESPONSE 2</td>
<td>AutoSeastate off (minimum deadband) = provides tighter course keeping</td>
</tr>
<tr>
<td></td>
<td>• increased power consumption and drive unit activity</td>
</tr>
<tr>
<td>RESPONSE 3</td>
<td>AutoSeastate off + counter rudder yaw damping = provides tightest</td>
</tr>
<tr>
<td></td>
<td>• possible course keeping by introducing counter rudder yaw damping</td>
</tr>
</tbody>
</table>
# Dealer Calibration: possible settings with Type 100/300

<table>
<thead>
<tr>
<th>Calibration setting</th>
<th>Vessel type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DISPLACE</td>
</tr>
<tr>
<td>Vessel type</td>
<td></td>
</tr>
<tr>
<td>Calibration lock</td>
<td>OFF</td>
</tr>
<tr>
<td>Rudder gain</td>
<td>5</td>
</tr>
<tr>
<td>Counter rudder</td>
<td>7</td>
</tr>
<tr>
<td>Rudder alignment</td>
<td>0</td>
</tr>
<tr>
<td>Rudder limit</td>
<td>30</td>
</tr>
<tr>
<td>Turn rate limit</td>
<td>20</td>
</tr>
<tr>
<td>Cruise speed</td>
<td>6</td>
</tr>
<tr>
<td>Off course angle</td>
<td>20</td>
</tr>
<tr>
<td>AutoTrim</td>
<td>2</td>
</tr>
<tr>
<td>Power steer</td>
<td>OFF</td>
</tr>
<tr>
<td>Drive type</td>
<td>3</td>
</tr>
<tr>
<td>Rudder damping</td>
<td>2</td>
</tr>
<tr>
<td>Variation</td>
<td>OFF</td>
</tr>
<tr>
<td>AutoAdapt</td>
<td>NORTH</td>
</tr>
<tr>
<td>Latitude</td>
<td>0</td>
</tr>
<tr>
<td>Wind Trim</td>
<td>1</td>
</tr>
<tr>
<td>(displacement only)</td>
<td></td>
</tr>
<tr>
<td>AutoTack angle</td>
<td>100</td>
</tr>
<tr>
<td>(displacement only)</td>
<td></td>
</tr>
<tr>
<td>AutoRelease</td>
<td>---</td>
</tr>
<tr>
<td>(sterndrives only)</td>
<td></td>
</tr>
<tr>
<td>Response</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: Information applies to Type 100/300 Course Computers with Version 15 software.
Specifications

ST7001+ control unit

- Nominal supply voltage: 12 V DC via SeaTalk
- Operating voltage range: 10 V to 15 V DC
- Current consumption (in Standby mode): 50 mA (less than 120 mA with full lighting)
- Operating temperature: 0 °C to +70 °C (32 °F to 158 °F)
- Water protection: waterproof to CFR46

Overall dimensions:

<table>
<thead>
<tr>
<th>width</th>
<th>height</th>
<th>depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>175 mm (6.9 in)</td>
<td>115 mm (4.53 in)</td>
<td>41 mm (1.62 in)</td>
</tr>
</tbody>
</table>

Keypad: 13 button illuminated keypad

Liquid Crystal Display (LCD):
- shows heading, locked course and navigational data, and up to 15 data pages

LCD illumination:
- 3 brightness levels + off; 15 contrast levels

Input connections:
- SeaTalk (x2) and NMEA 0183

Output connections:
- SeaTalk (x2)

CE approvals:
- conforms to: 89/336/EC (EMC), EN60945:1997

Course computer functions

<table>
<thead>
<tr>
<th>Control unit</th>
<th>Type 150G/400G</th>
<th>Course computer Type 150/400</th>
<th>Type 100/300</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST7001+</td>
<td>• Internal GyroPlus yaw sensor &lt;br&gt;• Enhanced course keeping using AST &lt;br&gt;• FastTrim &lt;br&gt;• Full access to AutoLearn, providing automatic steering calibration &lt;br&gt;• Improved track-keeping &lt;br&gt;• Steers to true and apparent wind in Wind Vane mode &lt;br&gt;• Improved calibration access</td>
<td>• Full basic functionality &lt;br&gt;• Improved track-keeping &lt;br&gt;• Steers to true and apparent wind in Wind Vane mode &lt;br&gt;• Improved calibration access, but without AutoLearn &lt;br&gt;• Uses Raymarine steering algorithm without AST &lt;br&gt;• No FastTrim</td>
<td>• Standard functionality using Raymarine steering algorithm without AST &lt;br&gt;• Improved calibration access, but without AutoLearn &lt;br&gt;• Steers to apparent wind only in Wind Vane mode</td>
</tr>
<tr>
<td>Term</td>
<td>Meaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------------------------------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>°</td>
<td>Degrees</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Amp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AST (Advanced Steering Technology)</td>
<td>AST (Advanced Steering Technology) is Raymarine's unique advanced steering algorithm. It uses inputs from a wide variety of sensors to tune the autopilot's operation to provide superior control of the boat in any condition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AutoLearn</td>
<td>Self-learning calibration feature available on Type 150G and 400G autopilot systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AutoTrim</td>
<td>The AutoTrim setting determines the rate at which the autopilot applies ‘standing helm’ to correct for trim changes caused by varying wind loads on the sails or superstructure.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AWG</td>
<td>American Wire Gauge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CE</td>
<td>Marked on Raymarine products that comply with defined European Community standards</td>
<td></td>
<td></td>
</tr>
<tr>
<td>counter rudder</td>
<td>Counter rudder is the amount of rudder the autopilot applies to try to prevent the boat from yawing off course. Higher counter rudder settings result in more rudder being applied.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CR pump</td>
<td>Constant Running hydraulic pump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DC</td>
<td>Direct current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMC (Electromagnetic Compatibility)</td>
<td>When powered up, all electrical equipment produces electromagnetic fields. These can cause adjacent pieces of electrical equipment to interact with one another, and this can degrade their performance. By following the EMC guidelines in this handbook, you can minimize these effects by ensuring optimum Electromagnetic Compatibility (EMC) between equipment.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluxgate</td>
<td>Standard Raymarine compass supplied with course computer core pack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ft</td>
<td>Foot (1 ft = 305 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GyroPlus</td>
<td>Raymarine's GyroPlus yaw sensor that measures the boat's rate of turn. It is built into the Type 150G and Type 400G course computers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz (cycles per second)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>in</td>
<td>Inch (1 in = 25.4 mm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I/O drive</td>
<td>Inboard/Outboard or stern drive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>km</td>
<td>Kilometre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>Metre (1 m = 39.4 inches)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mm</td>
<td>Millimeter (1 mm = 0.04 inches)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term</td>
<td>Meaning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------------------------------------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOB</td>
<td>Man overboard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nm</td>
<td>Nautical mile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NMEA</td>
<td>The NMEA (National Maritime Electronics Association) protocol is an internationally accepted serial communication interface standard for sharing data between electronic equipment. Raymarine products can share information with non-SeaTalk equipment using the NMEA 0183 protocol.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>response</td>
<td>The autopilot response level controls the relationship between course keeping accuracy and the amount of helm/drive activity.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rudder gain</td>
<td>Rudder gain is a measure of how much helm the autopilot will apply to correct course errors. The higher the setting the more rudder will be applied.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeaTalk</td>
<td>SeaTalk is Raymarine’s proprietary communication system. It links the products to provide a single, integrated system sharing power and data.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SeaTalk bus</td>
<td>This refers to the continuous SeaTalk system connecting together a series of Raymarine units.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SM</td>
<td>Statute (land) mile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSB</td>
<td>Single Side Band (radio)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 150</td>
<td>Raymarine 12 V course computer without internal GyroPlus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 150G</td>
<td>Raymarine 12 V course computer with internal GyroPlus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 400</td>
<td>Raymarine 12/24 V course computer without internal GyroPlus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 400G</td>
<td>Raymarine 12/24 V course computer with internal GyroPlus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Volt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VHF</td>
<td>Very High Frequency (radio)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WindTrim</td>
<td>WindTrim (wind response) controls how quickly the autopilot responds to changes in the wind direction. Higher wind trim settings will result in a pilot that is more responsive to wind changes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XTE</td>
<td>Cross track error</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yaw</td>
<td>The boat's rate of turn (°/sec)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Index

A
Adjusting autopilot settings 75–102
Accessing Calibration mode 78
Calibration groups 76
Dealer Calibration 92–100
Aligning rudder 94
AutoAdapt 99
Autopilot reset 100
AutoRelease 97
AutoTrim 96
Counter rudder 95
Cruise speed 99
Drive type 94
Latitude 100
Off course warning angle 97
Rudder damping 96
Rudder gain 95
Rudder limit 95
Seatrial Calibration lock 92
Turn rate limit 97
Vessel type 94
Display Calibration 79–86
Data pages 81
Display bar graph 79
Heading selection 79
Non-150/400 autopilots 106–114
Seatrial Calibration 63–73, 91
User Calibration 87–90
AutoTack angle 87
Gybe inhibit 87
Magnetic variation 90
Response 89
Wind selection 89
WindTrim (wind response) 89
Alarms and warnings
AUTO RELEASE 37
CURRENT LIMIT 37
DRIVE STOPPED 37
LARGE XTE 19
LOW BATT 37
LRN FAIL 37
MOB 33
MOT POW SWAPPED 37
NEXT WPT? 22
NO DATA 38
NO PILOT 38
OFF COURSE 10
RG FAIL 38
ROUTE COMPLETED 22
SEATALK FAIL 1 or 2 38
SEATALK/STLK FAIL 38
SHALLOW 33
WATCH 32
WINDSHIFT 28
Aligning rudder 61, 94
Apparent wind 25, 89
Auto mode 6–14
Changing course 7
Dodging obstacles 10
Entering Auto mode 6
Exiting Auto mode 6
Gusty conditions 13
Off course warning 10
Return to previous heading 11
Tacking (AutoTack) 12
AutoAdapt 99
AutoLearn 70
Autopilot commissioning
see Commissioning
Autopilot features 1
Autopilot operating modes
see Operating modes
Autopilot reset 100
Autopilot steering sense 58
AutoRelease
Alarm 37
Selecting (I/O drives) 97
AutoTack
Default angle 87
Gybe inhibit 13
Introduction 12
Wind Vane mode 28
AutoTrim, Setting 73, 96
B
Bar graph 5
Selecting bar type 79

C
Calibration mode 75–102
Accessing 78
Calibration groups 76
Dealer Calibration 92–100
Display Calibration 79–86
Non-150/400 autopilots 106–114
Seatrial Calibration 63–73, 91
User Calibration 87–90
Commissioning 55–73
Dockside checks 56–62
Step 1, Switch on 56
Step 2, Check connections 57
Step 3, Check sense 58
Step 4, Basic settings 59
Non-150/400 autopilots 105
Seatrial Calibration 63–73
Compass calibration 64–67
Set-up, AutoLearn 68–70
Set-up, Manual 71–73
Compass
Deviation correction 64
Heading alignment 66
Control unit
Display layout 5
Features 1
Installation 45–54
Keypad functions 4
Specifications 115
Counter rudder, Setting 72, 95
Course changes 7
Course computer functions 115
Cross track error
Explanation 19
LARGE XTE warning 19
Cruise speed 99
Current limit alarm 37

D
Data pages
Displaying 31

Setting up 81
Watch timer 32
Dealer Calibration 92–100
Disengaging the autopilot 6
Display Calibration 79–86
Display, Layout 5
Dodging obstacles
Auto mode 10
Track mode 23
Wind Vane mode 27
Drive stopped alarm 37
Drive type, Setting 61, 94

E
EMC
Installation guidelines 47
Servicing and safety guidelines 39
Engaging the autopilot 6
Error messages
see Alarms and warnings

F
Fault finding 36
Features 1
Functional test
Autopilot system 56
Repeater units 54

G
Glossary 116–117
Gusty conditions 13
Gybe inhibit 13, 87
GyroPlus fail alarm 38

H
Heading selection 79
Heading, Return to previous 11

I
Illumination 15
Initial sea trial
see Commissioning
Installation 45–54
Control unit 49
EMC guidelines 47
### Index

<table>
<thead>
<tr>
<th>Location 46</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMEA connections 51</td>
</tr>
<tr>
<td>Parts supplied 45</td>
</tr>
<tr>
<td>Power supply (via SeaTalk) 50</td>
</tr>
<tr>
<td>SeaTalk connections 50</td>
</tr>
<tr>
<td>Tools required 45</td>
</tr>
</tbody>
</table>

**K**

<table>
<thead>
<tr>
<th>Keypad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions 4</td>
</tr>
<tr>
<td>Illumination 15</td>
</tr>
</tbody>
</table>

**L**

| Large cross track error warning 19 |
| Last (previous) heading 11 |
| Last (previous) wind 27 |
| Latitude, Setting 100 |
| Learn fail alarm 37 |
| Lighting 15 |
| Low battery alarm 37 |

**M**

| Magnetic variation, Setting 90 |
| Maintenance 39 |
| Man overboard (MOB) warning 33 |
| Motor/Power swapped alarm 37 |

**N**

| Navigator |
| Connections 57 |
| Data pages 31 |
| NMEA |
| Connections 51 |
| Data decoded by control unit 51 |
| Inputs on control unit 52 |
| Receiving 51 |
| Transmitting 53 |
| No data alarm 38 |
| No pilot alarm 38 |
| Non-150/400 autopilots 103—114 |
| Adjusting autopilot settings 106—114 |
| Commissioning the autopilot 105 |
| Using the autopilot 104 |

**O**

| Off course warning |
| Default angle 97 |
| Description 10 |
| Operating (steering) sense 58 |
| Operating modes |
| Auto mode 6—14 |
| Calibration mode 75—102 |
| Standby mode 6 |
| Track mode 18—24 |
| Wind Vane mode 25—29 |

**P**

| Previous (last) heading 11 |
| Previous (last) wind 27 |
| Product support 40 |

**R**

| Response level |
| Default setting 89 |
| Temporary adjustments 7—9 |
| RG fail alarm 38 |
| Route Completed warning 22 |
| Rudder alignment (offset) 61, 94 |
| Rudder bar 79 |
| Rudder damping 96 |
| Rudder gain |
| Default setting 71, 95 |
| Temporary adjustments 29 |
| Rudder limit, Setting 61, 95 |
| Rudder sense, Checking 58 |

**S**

| SeaTalk |
| Connections 50, 57 |
| Data pages 31 |
| SeaTalk fail 1 or 2 alarm 38 |
| SeaTalk fail alarm 38 |
| Seatrial |
| see Commissioning |
| Seatrial Calibration 63—73, 91 |
| Seatrial Calibration lock 92 |
| Self-learn calibration (AutoLearn) 70 |
| Servicing 39 |
| Shallow warning 33 |
Software version 41
Specifications 115
Standby mode, Selecting 6
Steering bar 79
Swinging the compass 64

**T**
Testing the system
*see* Commissioning
Tidal stream compensation 20
Timer (Watch timer) 32
Track mode 18–24
  Dodging obstacles 23
  Entering Track mode 18
  Exiting Track mode 19
  Safety advice 24
  Waypoint arrival and advance 21
Trouble-shooting 36
True wind 25, 89
Turn rate limit 97

**U**
User Calibration 87–90

**V**
Vane mode
*see* Wind Vane mode
Variation, Setting 90
Vessel type, Setting 59, 94

**W**
Warning messages
*see* Alarms and warnings
Watch timer 32
Waypoint advance warning 18, 22
Waypoint arrival and advance 21
Wind angle
  Adjusting 26
  Return to previous 27
Wind instrument, Connections 57
Wind selection 89
Wind Vane mode 25–29
  Adjusting wind angle 26
  Apparent wind 25, 89
  AutoTack 28
  Dodging obstacles 27
  Entering Wind Vane mode 26
  Previous wind angle 27
  True wind 25, 89
  Wind shift warning 28
  WindTrim (wind response) 25
Limited Warranty Certificate

Raymarine warrants each new Light Marine/Dealer Distributor Product to be of good materials and workmanship, and will repair or exchange any parts proven to be defective in material and workmanship under normal use for a period of 2 years/24 months from date of sale to end user, except as provided below.

Defects will be corrected by Raymarine or an authorized Raymarine dealer. Raymarine will, except as provided below, accept labor cost for a period of 2 years/24 months from the date of sale to end user. During this period, except for certain products, travel costs (auto mileage and tolls) up to 100 round trip highway miles (160 kilometres) and travel time of 2 hours, will be assumed by Raymarine only on products where proof of installation or commission by authorized service agents, can be shown.

Warranty Limitations

Raymarine Warranty policy does not apply to equipment which has been subjected to accident, abuse or misuse, shipping damage, alterations, corrosion, incorrect and/or non-authorized service, or equipment on which the serial number has been altered, mutilated or removed.

Except where Raymarine or its authorized dealer has performed the installation, it assumes no responsibility for damage incurred during installation.

This Warranty does not cover routine system checkouts or alignment/calibration, unless required by replacement of part(s) in the area being aligned.

A suitable proof of purchase, showing date, place, and serial number must be made available to Raymarine or authorized service agent at the time of request for Warranty service.

Consumable items, (such as: Chart paper, lamps, fuses, batteries, stylis, stylus/drive belts, radar mixer crystals/diodes, snap-in impeller carriers, impellers, impeller bearings, and impeller shaft) are specifically excluded from this Warranty.

Magnetrons, Cathode Ray Tubes (CRT), TFT Liquid Crystal Displays (LCD) and cold cathode fluorescent lamps (CCFL), hailer horns and transducers are warranted for 1 year/12 months from date of sale. These items must be returned to a Raymarine facility.

All costs associated with transducer replacement, other than the cost of the transducer itself, are specifically excluded from this Warranty.

Overtime premium labor portion of services outside of normal working hours is not covered by this Warranty.

Travel cost allowance on certain products with a suggested retail price below $2500.00 is not authorized. When repairs are necessary, these products must be forwarded to a Raymarine facility or an authorized dealer at owner’s expense will be returned via surface carrier at no cost to the owner.

Travel costs other than auto mileage, tolls and two (2) hours travel time, are specifically excluded on all products. Travel costs which are excluded from the coverage of this Warranty include but are not limited to: taxi, launch fees, aircraft rental, subsistence, customs, shipping and communication charges etc. Travel costs, mileage and time, in excess to that allowed must have prior approval in writing.

TO THE EXTENT CONSISTENT WITH STATE AND FEDERAL LAW:

(1) THIS WARRANTY IS STRICTLY LIMITED TO THE TERMS INDICATED HEREIN, AND NO OTHER WARRANTIES OR REMEDIES SHALL BE BINDING ON RAYMARINE INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

(2) Raymarine shall not be liable for any incidental, consequential or special (including punitive or multiple) damages.

All Raymarine products sold or provided hereunder are merely aids to navigation. It is the responsibility of the user to exercise discretion and proper navigational skill independent of any Raymarine equipment.
Raymarine

Factory Service Centers

United States of America
Raymarine Inc
22 Cotton Road, Unit D
Nashua, NH 03063-4219, USA
Telephone: +1 603 881 5200
Fax: +1 603 864 4756
www.raymarine.com

Sales & Order Services
Telephone: +1 800 539 5539 Ext. 2333 or +1 603 881 5200 Ext. 2333

Technical Support
Telephone: +1 800 539 5539 Ext. 2444 or +1 603 881 5200 Ext. 2444
Email: techsupport@raymarine.com

Product Repair Center
Telephone: +1 800 539 5539 Ext. 2118

UK, Europe, Middle East, Far East
Raymarine Ltd
Anchorage Park, Portsmouth
PO3 5TD, England
Telephone: +44 (0)23 9269 3611
Fax: +44 (0)23 9269 4642
www.raymarine.com

Customer Support
Telephone: +44 (0)23 9271 4713
Fax: +44 (0)23 9266 1228
Email: techsupport@raymarine.com

Purchased from

Purchase date

Dealer address

Installed by

Installation date

Commissioned by

Commissioning date

Owner’s name

Mailing address

This portion should be completed and retained by the owner.